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1 Introduction - Patrick Massot

Theorem 1.1. (Donaldson ’96)
If (V, ω) is a closed symplectic manifold with 1

2π
[ω] ∈ H2(V,Z), then for k >> 1 there

exists Σ symplectic of codimension 2 such that [Σ] = PD( k
2π

[w]).

Here 1
2π

[ω] ∈ H2(V,Z) means ∀s ∈ H2(V,Z), 1
2π

∫
S
ω ∈ Z. This means that k

2π

∫
S
ω = Σ·S.

Remark 1.2.

• Recall that Gromov’s h principle builds symplectic submanifolds which are either open
or of codimension ≥ 4.

• If V is Kahler, then Kodaira gives an embedding V ↪→ CPN and Σ = V ∩(hypersurface in CPN).

• Any holomorphic curve in V has nonzero symplectic area, hence has to intersect Σ.
This is the basis of Cieliebak-Mohnke (see Chris Wendl’s talk).

• In dimension 4, the theorem can be used to construct holmorphic curves. Some appli-
cations: studying H∗ of Hilbert schemes, and showing that M3×S1 symplectic implies
that M fibers over S1.

Theorem 1.3. (Biran, Giroux)
There is a D2-bundle over Σ whose complement is isotropic.

Some related notions:

• The complement of Σ is Weinstein.

• One can fully (w.r.t. volume) fill V by an ellipsoid.

• Biran, Cieliebak: symplectic or Lagrangian embeddings

• Evans: Nijenhuis energy

• Symplectic isotopies and symplectic mapping class groups

Remark 1.4.

• In the theorem, Σ = s−1(0), where s : V → Lk is a section (here Lk the is k-fold tensor
product of L with itself).
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• Donaldson also constructs pairs s1, s2 such that B = (s1, s2)−1(0, 0) is a codimension
4 symplectic submanifold, and

V \B → CP1, x 7→ [s1(x) : s2(x)]

is a Lefshetz pencil.

• After blowing up B, we get a Lefshetz fibration Ṽ → CP1.

• Auroux showed that with a third section in dimension 4, V 4 becomes a branched cover
of CP2.

• There is also a contact version: Ibort-Martinez-Presas show how to construct contact
submanifolds.

• Giroux-Mohsen show how to construct open book decompositions.

• Casals-Pancholi-Presas construct contact structures in dimension 5.

• There are applications to rational convexity.

There are also some connections with fields:

• Existence of Kahler-Einstein metrics on Fano manifolds

• Statistics in real algebraic geometry

• Yomdin: dynamical systems, entropy

1.1 Line Bundles

Let V be a smooth manifold, V = ∪Ni=1Ui. Assume each Ui, Uij := Ui ∩ Uj, and Uijk :=
Ui ∩ Uj ∩ Uk is contractible. Let π : L→ V be a line smooth. We have trivializations:

π−1(Ui)
φi //

##HH
HH

HH
HH

H
Ui × C

{{ww
ww

ww
ww

w

Ui,

with

φi ◦ φ−1
j : Uij × C→ Uij × C, x 7→ (x, gij(x))

gij : Uij → C∗,
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satisfying the “cocycle condtion”:

gijgji = 1

gijgjk = gik.

Conversely, we can use the gij’s (satisfying the cocycle condition) to build the line bundle L.
If gij(x) ∈ U(1), we get a Hermitian structure. If L → V and L′ → V are two line

bundles with transition functions gij(x) and g′ij(x), the transitions functions for the line
bundle L⊗ L′ → V are given by gij(x)g′ij(x). Note that for s a section of L, we get locally
si : Ui → C.

Example 1.5. Let V = CP1 = C∪{∞}, with U0 = C, U1 = CP1 \ {0}. Then the transition
function g01(z) = zn builds the line bundle O(n) → CP1. One can check that holomorphic
sections of O(n) correspond to degree ≤ n polynomials, and that for such a section s we have
s−1(0) = n points.

1.2 Connections

Recall that a connection ∇ is given by ∇ : Γ(L)→ Γ(T ∗V ⊗ L) such that

∇(fs) = df ⊗ s+ f∇s.

We say that ∇ is Hermitian if

d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉.

Recall that over Ui ∇ can be written as

∇ = d+ Ai,

where Ai is a complex valued 1-form on Ui. If ∇ is Hermitian, then Ai will be purely
imaginary.

One can compute that on Uij, Ai = Ai + g−1
ij dgij, where g−1

ij dgij is closed, and hence
dAi = dAj. This means we get a well-defined curvature 2-form F := dAi on V .

Theorem 1.6. (Chern-Weil)
Let F = −iω be the curvature of a Hermitian line bundle L→ V , and let s be a section,

transverse to the zero section, with Σ = s−1(0). Then for Z any 2-cycle transverse to Σ, we
have

1

2π

∫
Z

ω = Z · Σ.

Note here that 1
2π

[ω] ∈ H2(V,Z).
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Proof. Fix ε > 0, and set

Vε = {|s| ≥ ε}
Zε = Z ∩ Vε.

On Vε,
∇s
s

is a well-defined complex valued 1-form satisfying

d

(
∇s
s

)
= −iω

(since locally we have ∇si = dsi + Aisi, hence d
(
∇si
si

)
= d

(
dsi
si

)
+ dAi = −iω). Then we

have ∫
Z

(−iω) = lim
ε→0

∫
Zε

(−iω)

= lim
ε→0

∫
Zε

d

(
∇s
s

)
= lim

ε→0

∫
∂Zε

∇s
s
.

Note that as ε goes to zero, the last integral is supported in an arbitrarily small neighborhood
of Σ ∩ Z. Therefore it will suffice to evaluate the limit near each point of Σ ∩ Z. Near such
a point, we can assume there are coordinates in some neighborhood U ⊂ Ui such that

s(r1, θ1, r2, θ2, ...) = r1e
iθ1 .

We then have

∇s
s

= s−1ds+ Ai = d log r1 + idθ1 + Ai.

Since

lim
ε→0

∫
∂Zε∩U

Ai = 0,

we have

lim
ε→0

∫
∂Zε∩U

∇s
s

= lim
ε→0

∫
∂Zε∩U

(d log r1 + idθ1)

= ±2πi.

It follows that we have ∫
Z

(−iω) = −2πi(Z · Σ),

as desired

Remark 1.7. Equivalently, for any β closed (n− 2)-form,

1

2π

∫
V

ω ∧ β =

∫
Σ

β.
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1.3 From Cohomology to Line Bundles

Theorem 1.8. Let ω be a closed 2-form on V . If [ω/2π] ∈ H2(V,Z), then there exists a
line bundle L → V and a Hermitian connection ∇ on L such that F = −iω (here F is the
curvature 2-form of ∇).

Proof. Fix an open covering V = ∪Ni=1Ui and βi a 1-form on Ui such that ω = dβi on
Ui. We want to find certain gij : Uij → U(1) satisfying the cocycle condition. On Uij,
d(βi − βj) = ω − ω = 0, so there exists fij : Uij → R such that dfij = βi − βj. On Uijk,
we have d(fjk − fik + fij) = 0, and hence fjk − fik + fij = aijk for some constant aijk.
Claim: [ ω

2π
] ∈ H2(V,Z) implies that we can choose the fij’s such that aijk ∈ Z. We then set

gij = exp(2πifij) and Ai = −iβi. Note that the cocycle condtion for gij follows from the fact
that aijk ∈ Z. Moreover, we have

Aj − Ai = iβi − iβj = idfij = g−1
ij dgij,

so the Ai’s indeed define a connection on the line bundle defined by the gij’s. Of course,
dAi = −idβi = −iω, as desired.

1.4 Back to Donaldson’s Result

Theorem 1.9. (Donaldson ’96)
Suppose ω is a symplectic form on a closed manifold V , with [ω/(2π)] ∈ H2(V,Z) and

L→ V is a line bundle having a connection with curvature −iω. Then there exists a sequence
of sections sk ∈ Γ(Lk) and constants C, δ > 0 such that for k >> 0,

• ∀x, |∂sk(x)| ≤ C/
√
k

• ∀x, |sk(x)| ≤ δ ⇒ |∇sk(x)| ≥ δ.

Remark 1.10.

• The connection ∇ on L gives rise to a connection (also denoted by ∇) on Lk with
curvature multiplied by k.

• The estimates in the theorem are with respect to some fixed compatible almost complex
structure J .

• In our notation, we have

∂s =
1

2
(∇s+ i∇s ◦ J)

∂s =
1

2
(∇s− i∇s ◦ J).
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• In Giroux’s notation, ∇′s = ∂s and ∇′′s = ∂s. Some authors also use ∇1,0s = ∂s and
∇0,1s = ∂s.

• On V , we use the metric gk(·, ·) := kω(·, J ·) when discussing properties of the line
bundle Lk. Note that we’re using pointwise norms.

Of fundamental importance is the following algebraic lemma:

Lemma 1.11. If A : Cn → C is R-linear and ||A0,1|| < ||A1,0|| (w.r.t the Euclidean metric
on Cn) then kerA is a codimension 2 symplectic subspace.

Proof. Consider the adjoint map A∗ : C→ Cn. Then

(A0,1)∗ = (A∗)0,1 : C→ Cn

(A1,0)∗ = (A∗)1,0 : C→ Cn,

where the first map is anti C-linear and the second map is C-linear.
Now set

v′ = (A1,0)∗(1), ||(A1,0)∗|| = ||v′||
v′′ = (A0,1)∗(i), ||(A0,1)∗|| = ||v′′||

By hypothesis, ||v′|| 6= ||v′′||. Now let ω0 denote the standard symplectic form on Cn, so

ω0(A∗1, A∗i) = ω0(v′ + v′′, iv′ − iv′′)
= ||v′||2 − ||v′′||2 6= 0

It follows that span(A∗1, A∗i) is a symplectic subspace of Cn. Then KerA = (ImA∗)⊥ =
i(ImA∗)ω0 (here the superscript ω0 denotes the symplectic orthogonal complement). Thus
ImA∗ is symplectic, and therefore so is (ImA∗)ω0 and hence KerA.

Our goal is to build sk’s which are

1. asymptotically holomorphic: |∂s)k| ≤ C/
√
k

2. uniformly transverse to 0: |s| ≤ δ ⇒ |∇s| ≥ δ.

The outline of the rest of the talks is roughly:

• Marco: build model sections in a Darboux chart. In the model, ω and the ∇ are
standard but J is non-integrable. But as k →∞, a “zoom effect” kills the effect of the
non-integrability. After proving some estimates, we will thus have lots of examples of
asymptotically holomorphic sk’s.

• Vincent: Choose among these a uniformly transverse sequence admitting a quantitative
version of Sard’s theorem.

• Thomas: Prove the quantitative version of Sard’s theorem modulo some results about
the complexity of semi-algebraic subsets of Cn (this will involve some complex analysis).

• Sylvain: Discuss the complexity of real semi-algebraic subsets (this will be geometric).

Note: These notes also include talks discussing applications of these ideas, given by
Jean-Paul Mohsen and Chris Wendl.
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2 Peak Sections - Marco Mazzucchelli

2.1 Building Almost Holomorphic Sections

We now describe the recipe for building almost holomorphic sections of

(Lk,∇)→ (V, J),

where ∇ is a connection with curvature −ikω. We consider the local setup:

(L0 = Cn × C, | · |,∇ = d+ A)→ (Cn, ω0, J0),

where | · | denotes a Hermitian inner product and A = 1
4

∑
j (zjdzj − zjdzj), dA = −iω0.

Consider the section of L0 given by f : Cn → C, f(z) = exp(−|z|2/4). We claim that f is
holomorphic, i.e. ∇0,1f = 0. Indeed,

∇0,1f = d0,1f + A0,1f

= ∂f +
1

4
zdzf

= −1

4
zdzf +

1

4
zdzf

= 0.

Then

∇f = ∇1,0f = ∂f + A1,0f = −1

2
zdzf,

which we view as a section of (T ∗Cn ⊗ L0, d⊗∇ := ∇̃). Here by definition

∇̃(β ⊗ s) = (dβ)⊗ s+ β ⊗ (∇s)

for β a section of T ∗Cn and s a section of L0. For brevity we’ll denote ∇̃ and its higher
derivative cousins again by ∇.

Now for r ∈ N we have

∇rf = ∇r−1(−1

2
zdzf)

= −1

2

r−1∑
j=0

(
r − 1

j

)
dj(zdz)⊗∇r−1−jf

= −1

2
zdz∇r−1 − 1

2
(r − 1)dz ⊗ dz∇r−2f,

and therefore |∇rf | ≤ Pr(|z|)f , where Pr is polynomial of degree r (which might change
from line to line).
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Now let’s make this section compactly supported. Let β : [0,∞) → [0, 1] be a smooth
function such that β ≡ 1 on [0, 1/2] and β ≡ 0 on [1,∞). For k ∈ N, let βk : Cn → R be
given by

βk(z) = β(k−1/3|z|2).

Observe that βkf is not a holomorphic section, but almost:

|∇r(βkf)| ≤ Pr(|z|)f
|∇0,1(βkf)| = (∂βk)f + βk∇0,1f = β′k−1/3zdzf

|∇r∇0,1(βkf)| ≤ k−1/3Pr(|z|)f.

Now let’s plug this local model into our Lk → (V, ω, J, g := ω(·, J ·)). Let φ : (B2n(R), ω0)→
(V, ω) be a Darboux chart with φ0 = p ∈ V . Without loss of generality we can assume φ is
J-holomorphic at 0, i.e.

dφ(0) ◦ J0 = J ◦ dφ(0).

For any fixed 0 ≤ ε < 1, we can assume (after shrinking R) that

(1− ε)|v|euc ≤ |v|g ≤ (1 + ε)|v|euc

for any v ∈ TB2n(R).
Now let φk(z) := φ(z/

√
k):

(B2n(
√
kR)× C, | · |, d+ A) //

��

(Lk, h,∇)

��
(B2n(

√
kR), ω0)

φk // (V, kω)

Note that φk : (B2n(
√
kR), ω0) → (V, kω) is again a symplectomorphism. Here the map

φ̃k : B2n(
√
kR)×C→ Lk, φ̃k(z, v0) = (φk(z), v1) is defined as follows. Let ∇ = d+B be the

pullback of ∇ to B2n(
√
kR), and let v1 be given by parallel transporting v0 along the radial

line from 0 to z in B2n(
√
kR) using the connection d+B.

Exercise 2.1. φ̃∗kB = A, and therefore ∇ becomes standard under φ̃k.
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Now using φ̃k, we can push forward the section βkf to a compactly supported section of
Lk. Note that for any k ∈ N and v ∈ TB2n(

√
kR) have

(1− ε)|v| ≤ |v|kg ≤ (1 + ε)|v|

where |v|kg =
√
kg((φk)∗v, (φk)∗v). Recall that J = J0 at the origin (pulling back J via φk)

and therefore we have

|dJ | ≤ const√
k

|J − J0| ≤
const√
k
|z|

for constants independent of k.
Now we have

∇0,1
J f =

1

2
(∇f + i∇fJ)

|∇r∇0,1
J f | = |∇r(∇0,1

J −∇
0,1)f | = |1

4
∇r(zdz ◦ (J − J0)f)|

(recall that ∇0,1f = 0) and therefore

|∇r∇0,1
J f | ≤ k−1/2Pr(|z|)f.

Similarly, we have

|∇r∇0,1
J βkf | ≤ k−1/2Pr(|z|)f.

But of course this estimate is still using the Euclidean metric, which we want to replace with
the metric ω(·, J ·) on V . Also, we want to replace the connection d⊗∇ on T ∗B2n ⊗L with
∇LC⊗∇, where ∇LC is the Levi-Civita connection. Morally, we should replace Pr(|z|) with
Pr(distkg(0, z)).

2.2 More on Peak Sections

Recall the setup: (Lk,∇) → (V, kω, J, kg), where L is a line bundle with connection ∇ of
curvature −iω inducing a connection ∇ on Lk of curvature −ikω. From last time:

Lemma 2.2. For any p ∈ V and k ∈ N large, there is a section s = sp,k such that

1. for any R > 0, there exists CR > 0 such that for k >> 0 we have |sp,k(q)| ≥ CR
provided distkg(p, q) ≤ R

2. |sp,k| ≤ 1

3. We have
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|∇rs(q)| ≤ Pr(distkg(p, q))ek(p, q)

|∇r∇0,1s(q)| ≤ 1√
k
Pr(distkg(p, q))ek(p, q)

where

ek(p, q) =

{
exp(−distkg(p, q)

2/5) if distkg(p, q)
2 ≤ k1/3

0 otherwise.

To build candidate almost holomorphic sections, set

s =
∑
p∈Λk

wpsk,p

where Λk is some suitable finite set of points in V , each wp ∈ C with |wp| ≤ 1.

Lemma 2.3. Fix r′ ∈ N. Then Λk can be chosen (for k >> 0) to be 1/
√
k-dense (i.e.

∪p∈ΛkBg(p, 1/
√
k) = V ) and such that for any such {wp} and any 0 ≤ r ≤ r′, we have

|∇rs| ≤ Cr

|∇r∇0,1s| ≤ Cr/
√
k.

In subsequent lectures we’ll show that we can choose {wp} (for k >> 0) such that

|∇1,0s| ≥ ε > 0 on s−1(0),

which will imply that s is transverse to the 0-section and there |∇0,1s| < |∇1,0s|.

Proof of Lemma 2.3. For ρ > 0, suppose Λ ⊂ R is discrete with respect to ρ, i.e. B(x, ρ) ∩
B(y, ρ) = ∅ if x, y ∈ Λ, x 6= y. Then for any a, b ∈ N \ {0}, there exists Ca,b,ρ > 0 such that∑

λ∈Λ

|z − λ|α exp(−b|z − λ|2) ≤ Ca,b,ρ

for any z ∈ Rn. Here Ca,b,ρ is independent of our choice of ρ-discrete Λ.
Now fix a finite atlas for V , {φα : Uα → V 2n}, with U ′′α ⊂⊂ U ′α ⊂⊂ Uα, such that

{φα(U ′′α)} covers V and

1

2
|x− y| ≤ distg(φα(x), φα(y)) ≤ 2|x− y|.
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Let Λ′k = 1√
2nk

(Zn ⊕ iZn), and note that Λ′k is 1
2
√
k
-dense in Cn. Set Λk,α = φα(Λ′k ∩ U ′α)

and Λk = ∪αΛk,α. Recall that ek(x, λ) = 0 if distg(x, λ) > k−1/3, hence if x /∈ φα(Uα). Now
for x ∈ φα(Uα), we have∑

λ∈Λk,α

distkg(x, λ)rek(x, λ) ≤
∑
λ∈Λ′k

2rkr/2|φ−1
α (x)− λ|r exp

(
−k|φ−1

α (x)− λ|2

20

)

≤
∑
λ∈Λ′k

2r|k1/2φ−1
α (x)− λ|r exp

(
−k|φ−1

α (x)− λ|2

20

)
≤ const.

3 Quantitative Transversality in Symplectic Geometry

- Jean-Paul Mohsen

For A : V → W a linear map between vector spaces, define

InjA = min
x∈V, ||x||=1

||Ax||

SurjA = min
λ∈W ∗,||λ||=1

||λ ◦ A|| = InjA∗.

Observe that A is injective if and only if InjA 6= 0, and similarly A is surjective if and only
if SurjA 6= 0.

The Transversalization Theorem will say that we can perturb an approximately holo-
morphic section of a very positive line bundle Lk to make it transverse to the zero section,
with certain estimates. Let (V, ω, J, g) be an almost Kahler manifold, L→ V a complex line
bundle with connection ∇L and curvature −iω, and E → V a Hermitian vector bundle with
connection ∇E.

Roughly, we have:

Theorem 3.1. For s an approximately holomorphic section of Lk ⊗ E with k >> 1, there
exist sections s1, s2 of Lk ⊗ E such that

• s = s1 + s2

• s1 t 0 with estimates

• s2 is small (in some Cr sense).

Remark 3.2. For V1 ⊂ V compact, we can replace “s1 t 0 with estimates” with “(s1)V1 t 0
with estimates”.

Theorem 3.3. For any ε, C > 0, m ∈ N, there exists δ > 0 such that, for all k >> 1 and
s ∈ Γ(Lk ⊗ E) satisfying
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• ||s||kg < C

• ||∇s||kg ≤ C

• ||∇′′s||kg ≤ C/
√
k

• ||∇2s||kg ≤ C

• ||∇(∇′′s)||kg ≤ C/
√
k

there exist s1, s2 ∈ Γ(Lk ⊗ E) with s = s1 + s2 such that

• For any p ∈ V1, δ ≤ max
(
||s1(p)||, Surjkg(∇s1)TpV1

)
• ||∇is2||kg ≤ ε for 0 ≤ i ≤ m

• ||∇i∇′′s2||kg ≤ ε/
√
k for 0 ≤ i ≤ m− 1.

Proof. The proof of the above theorem involves four steps:
1st step: transversality for real polynomial maps
2nd step: transversality for holomorphic maps
3rd step: local transversality for approximately holomorphic sections
4th step: global transversality for approximately holomorphic sections

We give an outline of the last three steps.
1st step: Let V,W be Hermitian vector spaces, F : 11

10
BV → BW a holomorphic map

between balls, and V1 ⊂ V a real subspace. Fix ε > 0. Then we can find v ∈ W such that

• ||v|| ≤ ε

• for any x ∈ V1 ∩BV , max (||F (x)− v||, Surj((dxF )V1)) ≥ ε/(log(1/ε))N

3rd step: We consider the case where E = V × Cr is a trivial bundle over V . Let s be an
approximately holomorphic section of Lk ⊗ Cr and let y1 ∈ V1. Then there exist sections
s1, s2 such that

• s = s1 + s2

• for any y ∈ V1 with dkg(y, y1) ≤ 1, we have max
(
||s1(y)||, Surjkg(∇s1)TyV1

)
≥ ηε

• s2 = v ⊗ sy1,k, where v ∈ Cr with ||v|| ≤ ε and where sy1,k is a “peak section” of Lk at
y1

• ηε = ε/(log(1/ε))N .

4th step: There exists Λk = {y1, ..., ynk} ⊂ V1 such that

• dkg(yi, yj) ≥ 1 for any i 6= j

• for any y ∈ V1, there exists i such that dkg(y, yi) ≤ 1

13



• ηk ≤ CkdimV1/2.

Now let ε1 ≥ ε2 ≥ ... ≥ εnk > 0. Again take E = Cr. Consider sections

• s2 =
∑nk

i=1 vi ⊗ syi,k for some v1, ..., vnk ∈ Cr with ||vi|| ≤ εi for 1 ≤ i ≤ nk

• s1 = s− s2.

Also, consider sections

• sj2 =
∑j

i=1 vi ⊗ syi,k

• sj1 = s− sj2

(so s2 = snk2 and s1 = snk1 ). By Step 3, we can find vj such that

• ||vj|| ≤ εj

• for any y ∈ V1 with dkg(y, yj) ≤ 1, we have max
(
||sj1(y)||, Surjkg(∇js1)TyV1

)
≥ ηεj .

Then we have

||s1(y)|| ≥ ||sj1(y)|| −
nk∑

i=j+1

||vi|| · ||syi,k(y)||,

where

nk∑
i=j+1

||vi|| · ||syi,k(y)|| ≤
nk∑

i=j+1

εiC exp
(
−d2

kg(y, yi)/2
)
,

and we have a similar estimate for Surjkg(∇s1)TyV1 . Then

max
(
||s1(y)||, Surjkg(∇s1)TyV1

)
≥ ηεj −

nk∑
i=j+1

εiC exp
(
−d2

kg(y, yi)/2
)

=: η∗εj .

Question: Can we choose ε1 ≥ ε2 ≥ ... ≥ εnk > 0 such that min η∗j ≥ η > 0 (where η is
independent of k)?
Answer: No, unless we reorder the points of Λk!

The idea is to permute the yi’s such that for any i 6= j, either |i− j| is “large enough” or
else dkg(yi, yj) is “large enough”.
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4 Global Theory Modulo Quantitative Sard’s Theorem

- Vincent Humilière

In this lecture we discuss the global construction of Donaldson hypersurfaces. Recall that
Marco showed how to construct a finite subset

Λk = {p1, ..., pnk} ⊂ V

with the following property. For for any w = (w1, ..., wnk) with |wj| for 1 ≤ j ≤ nk, let
sw =

∑nk
j=1 wjsk,pj . Then there exists some C > 0 such that for any k >> 0 and any such

w, we have

|∇0,1
J sw| ≤ C/

√
k.

Our goal now is to prove the following:

Proposition 4.1. There exists ε > 0 such that for any k >> 0, there exists w such that

|∇1,0
J sw| > ε on s−1

w (0).

Theorem 4.2. For any k >> 0, there exists a section s : V → Lk such that

|∇0,1s| < |∇1,0s| on s−1(0).

4.1 Coloring and Strategy

Lemma 4.3. For any D > 0, there exists N(D) = O(D2n) such that, for k >> 0, Λk can
be chosen as before with:

• Λk is 1-dense with respect to dk := dkg

•
∑

p∈Λk
dk(p, ·)rek(p, ·) ≤ C

• Λk admits a partition Λk = Ik1 ∪ ... ∪ IkN(D) such that for any p, q ∈ Iα, d(p, q) ≥ D.

Proof. As before, we have a finite atlas for V , {φβ : Uβ → V 2n} and open sets U ′′β ⊂⊂ U ′β ⊂⊂
Uβ, and Λk was constructed such that

φβ(Λk ∩ U ′β) =
1√
2nk

(Zn + iZn).

Observe that (Zn + iZn)/L(Zn + iZn), for L ∈ N, gives a partition of (Zn + iZn) such that
two elements in the same class are a distance at least L apart. Pushing this forward to V ,
for L large enough we get a partition of Λk ∩ U ′β such that two elements in the same class
are a distance at least D apart. We take the union over β of all these partitions.
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Our strategy will be as follows. Fix D > 0 and start with an arbitrary w0. We inductively
adjust the coefficients of w0 of color α ∈ {1, ..., N(D)} to get some wα. At each step, the
change of coefficients

• gives some “controlled transversality” on all dk 1-balls of color α

• does not kill the controlled transversality previously obtained on balls of color less than
α.

More precisely, for any α we will find ε > 0 such that

|∇1,0
J swα| > α on s−1

wα
(0) ∩ ∪i∈Ikβ ,β≤αBi,

where Bi denotes the dk ball of radius 1 centered at pi.

4.2 Controlled Transversality

Definition 4.4. Consider a map f : U ⊂ Cn → C and a complex number w ∈ C. We say
f is “η-transverse” to w if for any z ∈ U such that |f(z)− w| ≤ η we have |∂f(z)| ≥ η.

Remark 4.5. • If f is holomorphic, f is transverse to w if and only if f is η-transverse
to w for some η > 0.

• If f is η-transverse then it is also η′ transverse for any η′ < η.

• If f is η-transverse and ||f − g||C1 ≤ δ < η, then g is (η − δ)- transverse.

We are now almost ready to state our version of the Quantitative Sard’s Lemma. Let

• ∆ = B(0, 11/10) ⊂ Cn

• ∆+ = D(0, 22/10)× ...×D(0, 22/10) ⊂ Cn

• Qp(t) = (− log t)−p p ∈ N, t > 0

Theorem 4.6. (Donaldson) There exists p ∈ N such that for any δ ∈ (0, 1/4), any σ ≤
δQp(δ) and any f : ∆+ → C such that ||f ||C0 ≤ 1 and ||∂f ||C1 ≤ σ, there exists w ∈ C
with ||w|| ≤ δ such that f is δQp(δ)-transverse to w on ∆. Moreover, w can be chosen in
any quadrant of C (here by quadrant we mean any rotation of the standard first quadrant by
some angle).

Remark 4.7. • For f holomorphic, if ||f ||C0 ≤ 1, there exists w with ||w|| < δ such
that f is δQp(δ)-transverse to w.

• For fixed t, Qp(t) decreases with p (if t < 1/e) so if p works, then p+ 1 also works.
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Recall that for any pi ∈ Λk we have Darboux charts φkpi which are approximate isometries
Let

Bi = Bdk(pi, 1) ⊂ φkpi(∆) ⊂ φkpi(∆
+).

Then

sw = (fi ◦ (φkpi)
−1)sk,pi

on φkpi(∆
+) defines fwi : ∆+ → C.

Definition 4.8. We say s is η-transverse if all fi’s are η-transverse to 0.

4.3 Estimates for the fi’s

Lemma 4.9. There exists C > 0 such that for any k >> 0 and any w, we have

1. ||fwi ||C1(∆+) ≤ C.

2. ||∂fwi ||C1(∆+ ≤ C/
√
k.

3. If ||∂fwi || > ε on f−1
i (0) ∩∆, then |∇1,0sw| > ε/C on s−1

w (0) ∩Bi.

If w′ coincides with w except on Ikα and such that |wi − w′i| < δ, then we have

4. For any pi ∈ Λk, ||fwi − f
w′

i ||C1(∆+) ≤ Cδ.

5. For any pi ∈ Λk, if wi = w′i then ||fwi − f
w′

i ||C1(∆+) ≤ Cδ exp(−D2/5).

Proof idea. There exists R > 0, for any k >> 0, with φkpi(∆
+) ⊂ Bdk(pi, R), and there exists

CR such that |sk,pi| ≥ CR > 0 on φkpi(∆
+) (this was proven in Marco’s lecture).

1. We have sw◦φ = fi·(sk,pi◦φi), with |fi| = |sw◦φi|/|sk,pi◦φi| ≤ C for φi := φkpi : ∆+ → V
Then

∇sw = d(fi ◦ φ−1
i )⊗ sk,pi + (fi ◦ φ−1

i )∇sk,pi

with

||d(fi ◦ φ−1
i || ≤ |∇sw|/|sk,pi |+ (|fi ◦ φ−1

i |)|∇sk,pi |/|sk,pi | ≤ C,

and hence ||dfi|| ≤ C since φi is an approximate isometry.

2. We have

∂sw = ∂(fi ◦ φ−1
i )⊗ sk,pi + (fi ◦ φ−1

i )∂sk,pi

|∂(fi ◦ φ−1
i )| ≤ C/

√
k

hence |∂fi| ≤ C/
√
k.
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3. We have ∂sw = ∂(fi ◦ φ−1
i )⊗ sk,pi + (fi ◦ φ−1

i )∂sk,pi with fi ◦ φ−1
i = 0 on s−1

w (0), so

|∂sw| = |sk,pi ||∂(fi ◦ φ−1
i )| > (CR)(ε).

4. We have sw−w′ = (fwi − f
w′

i )sk,pi hence since |underlinew − w′| ≤ δ, by (1) we have

||fwi − f
w′

i || ≤ Cδ.

5. For any pj ∈ Ikα \ {pi} with dk(pj, pi) ≥ D, we have

||sk,pj || ≤ C exp(−D2/5),

and therefore

||sw−w′ || ≤ Cδ exp(−D2/5)

||fwi − f
w′

i || ≤ Cδ exp(−D2/5).

4.4 Induction on Colors

The present goal is to inductively construct a sequence wα such that for any α there exists
ηα > 0 such that swα is ηα-transverse on

Vα = ∪i∈Ikβ , β≤αBi.

Proposition 4.10. There exists 0 < ρ < 1 and p ∈ N such that if swα is ηα-transverse on
Vα with ηα < ρ, and if

1. 1/
√
k ≤ ηαQp(ηα)

2. exp(−D2/5) ≤ Qp(ηα),

then there exists wα+1 such that swα+1 is ηα+1-transverse (on Vα+1) with ηα+1 = ηαQp(ηα)

(recall that Qp(t) = (− log t)−p).

Proof. We have fαi : ∆+ → C with

||fαi ||C0(∆+) ≤ C

||∂fαi ||C1(∆+) ≤ C/
√
k.

Applying Sard’s theorem to 1
C
fαi for i ∈ Ikα+1, there exists p0 such that for any δ, k with

δ ∈ (0, 1/4) (1)

1/
√
k ≤ δQp0(δ), (2)
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there exists vi ∈ C with |vi| < δ, where C−1fαi is δQp0(δ)-transverse to vi on ∆.

Set wα+1,j =

{
wα+1,j − Cvj if j ∈ Ikα+1

wα,j otherwise

If

|cδ| < 1, (3)

we can use the quadrant condition to ensure that wα,j − Cvj actually lies in the unit disk.
Now we need estimates on swα+1 on each Bi, i ∈ Iβ, β ≤ α + 1. Let i ∈ Iβ for β ≤ α.

Then swα is ηα-transverse (on Vα) and for any j, |wα+1,j −wα,j| ≤ Cδ. By the fourth part of
the lemma, we have

||fα+1
i − fαi ||C1(∆+) ≤ C2δ,

hence swα+1 is ηα − C2δ transverse. Note that this is relevent only if C2δ < ηα.
Now let i ∈ Iα+1. Introduce an auxiliary w′ defined by

w′j =

{
wα,j if j 6= i

wα,i − Cvi otherwise

Compare swα and sw′ :

swα−w′ = Cvisk,pi ,

so f ′i − fαi = −Cvi, hence

fαi is CδQp(δ)− transverse to Cvi

f ′i is CδQp0(δ)− transverse to 0.

Now compare sw′ with swα+1 . Observe that w′ and wα+1 coincide except on Iα+1 \ {i}.
By the fifth part of the lemma, we get

||fα+1
i − f ′i ||C1(∆+) ≤ Cδ exp(−D2/5)

and so fα+1
i is CδQp0(δ)− Cδ exp(−D2/5)-transverse to 0. This is relevant only if

exp(−D2/5) ≤ Qp0(δ). (4)

Now we choose δ (and the other parameters). Let ρ be small enough that

ηα
2C2

< min(1/2, 1/C)

and let δ = ηα
2C2 . Then (1),(2), and (4) are satisfied.
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Now we consider p = p0 + 1. Since Qp(t) → 0 as t → 0, for ρ small enough we have
Qp0(δ) >> Qp(ηα). Then

(A) 1/
√
k ≤ ηαQp(ηα) =⇒ (2) (since 1/

√
k ≤ δQp0(δ))

(B) exp(−D2/5) ≤ Qp(ηα) =⇒ Qp0(δ) >> exp(−D2/5).

Since CδQp0(δ) − Cδ exp(−D2/5) ≈ CδQp0(δ) > ηαQp(ηα) = ηα+1, fα+1
i is ηα+1-transverse

for and i ∈ Iα+1. Using condition (2), for any i ∈ Iβ with β ≤ α, fα+1
i is (ηα − C2δ)-

transverse. Here ηα − C2δ = ηα(1− 1/2) = (1/2)ηα > ηαQp(ηα) for ρ small enough because
Qp(t)→ 0 as t→ 0.

Now that we have proven the proposition, we need to show that we can apply it repeatedly,
each time getting conditions (A) and (B).

Exercise 4.11. Let p > 0, (ηα)α∈N∗, ηα+1 = ηα + p log(ηα). Then for any q > p, there exists
β ∈ N such that ηα < q(α + β) log(α + β).

Assuming the exercise, let η0 = ρ (as given by the proposition) and set ηα+1 = ηαQp(ηα).
Applying the exercise to − log(ηα), we get

Qp(ηα) = η−pα ≥
1

(q(α + β) log(α + β))p
≥ C

(α logα)p

≥ C

(N(D) logN(D))p

≥ 1

D2np+1

≥ exp(−D2/5)

(N(D) = O(D2n)). So (B) is satisfied at any step for D large enough. Condition (A)
(1/
√
k ≤ ηαQp(ηα)) is satisfied for k >> 0 for any α (recall that there are a finite number

of colors).

5 Quantitative Sard’s Theorem Modulo Yomdim’s Re-

sults - Thomas Letendre

First some notation:

∆ = {z ∈ Cn | |z| ≤ 11/10}
∆+ = {z ∈ Cn | |zj| ≤ 22/10 ∀ j}.

For σ > 0 let

Hσ = {f : ∆+ → C smooth | ||f ||C0(∆+) ≤ 1, ||∂f ||C1(∆+) ≤ σ}.
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For p ∈ N and η > 0,

Qp(η) =

(
1

log(1/η)

)p
.

Note that for η ≤ 1/4, Qp(η) ≤
(

1
log(4)

)p
.

Definition 5.1. A smooth function f : U → C is called η-transverse to w ∈ C over U if for
any z ∈ U such that |f(z)− w| ≤ η, we have |∂zf | ≥ η.

Theorem 5.2. (Donaldson) There is some p ∈ N depending only on the dimension n such
that for any η ∈ (0, 1/4), σ ∈ (0, ηQp(η)), and f ∈ Hσ, there exists w ∈ C with |w| ≤ η such
that f is ηQp(η)-tranverse to w over ∆. Moreover, we can assume Re(w), Im(w) > 0 (in
fact we can pick w is any quadrant).

Here is the outline:

1. Approximate holomorphic functions by polynomials

2. Prove the theorem for holomorphic functions

3. Prove the general case (modulo Hormander’s methods)

4. Hormander’s methods

1) We begin with

Lemma 5.3. Let f : ∆+ → C be a holomorphic function such that ||f ||C0(∆+) ≤ 1. There
exists C > 0 such that for any 0 < ε ≤ 1/2, there exists a polynomial g of degree at most
C log(ε−1) such that ||f − g||C1(∆) ≤ ε.

Proof. Let Γ = {z ∈ Cn | |zj| = 22/10 ∀ j}. For any z ∈ ∆, Cauchy’s formula gives

f(z) =
1

(2πi)n

∫
Γ

f(w)

(w1 − z1)...(wn − zn)
dw1...dwn

f(z) =
∑

ai1...inz
i1
1 ...z

in
n

with

ai1...in =
1

(2πi)n

∫
Γ

f(w)

wi1+1
1 ...win+1

n

dw.

For s ∈ N, let gs =
∑

ij≤s ai1...inz
i1
1 ...z

in
n . For z ∈ ∆, we have

f(z)− gs(z) =
∑

∃j st ij>s

ai1...inz
i1
1 ...z

in
n

=
1

(2πi)n

∫
Γ

f(w)

w1...wn

∑
∃j st ij>s

(
z1

w1

)ii
...

(
zn
wn

)in
dw

=
1

(2πi)n

∫
Γ

f(w)

w1...wn
Ez(w)dw,
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where Ez(w) :=
∑
∃j st ij>s

(
z1
w1

)ii
...
(
zn
wn

)in
. We have

|f(z)− gs(z)| ≤ ||f ||C0(∆+)||Ez||C0(Γ) ≤ ||Ez||C0(Γ)

|Ez(w)| ≤
∑

i1...in st ∃j st ij>s

1

2i1
...

1

2in

≤ n

(∑
i1∈N

1

2i1

)
...

(∑
in>s

1

2in

)
≤ n2n−s−1,

and therefore

||f − gs||C0(∆) ≤ n2n−s−1.

Similarly, ∣∣∣∣ ∂∂zj (f − gs)(z)

∣∣∣∣ =

∣∣∣∣ 1

(2πi)n

∫
Γ

f(w)

w1...wn

∂

∂zj
(Ez(w))dw

∣∣∣∣
≤
∣∣∣∣∣∣∣∣ ∂∂zj (Ez)

∣∣∣∣∣∣∣∣
C0(Γ)

≤ (s+ n+ 1)2n−s−1

||∂(f − gs)||2C0(∆) =
∑
j

∣∣∣∣∣∣∣∣ ∂∂zj (f − gs)
∣∣∣∣∣∣∣∣2
C0(∆)

so

||∂(f − gs)||C0(∆) ≤
√
n(s+ n+ 1)2n−s−1.

Then for some C, λ, we have ||f − gs||C1(∆) ≤ Ce−λs.

Now let 0 < ε ≤ 1/2. Observe that Ce−λs ≤ ε is equivalent to s ≥ log(C)+log(ε−1)
λ

. Define

g := gs for s =
⌊

log(C)+log(ε−1)
λ

⌋
+ 1. Then g is a polynomial with deg(s) ≤ ns. Note that

deg(g) ≤ n
(

log(C)+log(ε−1)
λ

+ 1
)
≤ C ′ log(ε−1).

2) Now we prove the theorem for holomorphic functions. Let f : ∆+ → C be a holomorphic
function such that ||f ||C0(∆+) ≤ 1 and 0 < ε < 1/4. Let

Sf = {z ∈ ∆ | |∂zf | ≤ ε}.

Note that f is ε-transverse to w ∈ C over ∆ if and only if w ∈ Nf,ε (the ε-neighborhood
of f(Sf )). Let g be the polynomial given by the lemma, so d = deg(g) ≤ C log(ε−1) and
||f − g||C1(∆) ≤ ε. Let

Sg = {z ∈ ∆ | |∂zg| ≤ 2ε}
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and let Ng,ε be the ε-neighborhood of g(Sg). Then Sf ⊂ Sg (since ||f − g||C1(∆) ≤ ε) and
f(Sf ) ⊂ f(Sg) ⊂ Ng,ε (since ||f − g||C0(∆) ≤ ε) and thus Nf,ε ⊂ Ng,2ε.

Complexity of semi-algebraic sets:

Let P : Rn → R be a polynomial and let

Sp = {x ∈ Rn | ||x|| ≤ 1, P (x) ≤ 1}

and for θ > 0,

Sp(θ) = {x ∈ Rn | ||x|| ≤ 1, |P (x)| ≤ 1 + θ}.

Theorem 5.4. (Yomdin, Gromov, Donaldson, Mohsen)
There exists constants C, V depending only on n such that for any P , there exists ar-

bitarily small θ > 0 such that S may decomposed into A pieces:

SP = S1 ∪ ... ∪ SA

and any two points in the same Sj can be joined by a path of length at most L in Sp(θ) with
A,L ≤ CdV where d = deg(P ).

Proof. Set

Sg = {z ∈ ∆ |
∣∣∣∣∂zg2ε

∣∣∣∣2 ≤ 1} = Sp.

Take θ as given by the theorem: A,L ≤ C deg(P )V = C(2(d− 1))V and Sg = S1 ∪ ... ∪ SA.
For any z1, z2 ∈ Sj, |g(z1)−g(z2)| ≤ 2εL and z1, z2 can be joined by a path of length at most
L in Sp(θ). Moreover, g(Sg) can be covered by A disks of radius at most 2εL.

Now Ng,2ε is contained in a union of A disks of radius at most 2ε(L + 1), hence its area
is at most Aπ(2ε(L+ 1))2. Let

Ωp = {w ∈ C | |w| ≤ ρ and Re(w) > 0, Im(w) > 0}.

If 1
4
πρ2 < Aπ(2ε(L + 1))2, i.e. ρ >

√
A(4ε(L + 1)), there is w ∈ Ωp \ Ng,2ε such that f is

ε-tranverse to w over ∆. Choose ρ0 = 4
√
Aε(L+ 1) + ε. Then there exists

w ∈ Ω := {w ∈ C | Re(w) > 0, Im(w) > 0}

such that |w| ≤ ρ0 and f is ε-tranverse to w over ∆.
Since A,L ≤ C(2(d − 1))v, we have ρ ≤ εP (d) for P a polynomial and d ≤ C ′ log(ε−1).

Thus

ρ0 ≤ εP̃ (log(ε−1))

≤ C ′′ε log(ε−1)p

for some p ∈ N and P̃ a polynomial. Here C ′′ and P depend only on n.
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Let hp(ε) = Cε log(ε−1)p.

Exercise 5.5. hp(ε) → 0 as ε → 0, and hp : (0, ε−p) → (0, hp(ε
−p)) is strictly increasing

(hence invertible).

Up to increasing p, hp(ε
−p) ≥ 1/4. Let 0 < η < 1/4, ε = h−1

p (η). There exists w ∈ Ω
with |w| ≤ hp(ε) = η and ε-transverse to w. We have

ηQp(η) = Cε

(
log(ε−1)

log(ε−1)− log(C)− log(log(ε−1))

)p
≤ 2εC

if η ≤ η0.
Then for η ≤ η0, ηQp(η)

2C
≤ ε so f is ηQp(η)

2C
-tranverse to w. Increasing p again, we can

• lift the condition η ≤ η0

• erase 1/(2C).

For all 0 < η ≤ 1/4, there exists w ∈ Ω such that (for the new p) |w| ≤ η, f is ηQp(η)-
tranvserse to w over ∆.

3) The General Case:

Let 0 < η < 1/4, σ ≥ 0, f ∈ Hσ, and 3/4 < r′ < 1.

Theorem 5.6. (Hormander) For any (smooth) (0, 1)-form g over ∆+ such that ∂g = 0,
there exists u : ∆+ → C (smooth) such that ∂u = g and ||u||L2(r′∆+) ≤ K||g||L2(∆+), with K
depending only on r′.

Applying this to g = ∂f , we get a smooth function u with ∂u = ∂f and ||u||L2(r′∆+) ≤
K||∂f ||L2(∆+) Let f̂ := f − u and note that f̂ is holomorphic. Let 3/4 < r < r′ and
ε = (r′− r)/2. Let Bε(z) be the ball in Cn with center z and radius ε. We have the following
analytic lemma (we omit the proof):

Lemma 5.7. For any z ∈ r∆+, |u(z)| ≤ C(||u||L2(Bε(z)) + ||∂f ||C0(Bε(z))), with C depending
only on ε.

Therefore we have

||u||C0(r∆+) ≤ C(||u||L2(r′∆+) + ||∂f ||C0(∆+))

≤ C ′||∂f ||C0(∆+)

(since ||u||L2(r′∆+) ≤ K||∂f ||L2(∆+)). By a similar computation, we have

||du||C0(r∆+) ≤ C(||∂f ||C0(∆+) + ||d∂f ||C0(∆+))
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hence

||f̂ − f ||C1(r∆+) = ||u||C1(r∆+)

≤ C(||∂f ||C0(∆+) + ||d∂f ||C0(∆+))

≤ Cσ

(recall that f ∈ Hσ). Set η′ = η
1+Cσ

.

Now there exists w ∈ Ω such that |w| ≤ η′ and f̂
1+Cσ

is η′Qp(η
′)-tranverse to w over ∆.

Let w′ := (1 + Cσ)w, w ∈ Ω, |w′| ≤ η and f̂ is (1 + Cσ)η′Qp(η
′)-transverse to w′ over ∆.

Note that (1 + Cσ)η′Qp(η
′) ≥ ηQp′(η) for some p′ > p.

So up to increasing p, f̂ is ηQp(η)-transverse to w′ over ∆. Since ||f−f̂ ||C1(r∆+) ≤ Cσ, we

have that f is (ηQp(η)−Cσ)-tranverse to w′ over ∆. If σ ≤ 1
2C
ηQp(η), f is ηQp(η)

2
-tranverse

to w over ∆. Increasing p again, f is ηQp(η)-tranverse to w over ∆ and this is true for any
σ ≤ ηQp(η).

4) Hormander’s L2 methods:

Let φ : ∆+ → R be continuous, and let

L2(φ) = {f : ∆+ → C |
∫

∆+

|f |2e−φ <∞}

L2
(0,q)(φ) = {(0, q)− forms on ∆+ with coefficients in L2(φ)}.

We write a typical element of the latter set as ω =
∑
ωIdzI .

Hilbert spaces: Define an inner product on L2
(0,q)(φ) by 〈w, η〉φ =

∑
|I|=q

∑
∆+ ωIηIe

−φ.

Fix φ1, φ2, φ3 : ∆+ → C continuous functions. Then ∂ defines a closed, densely defined
operator T : L2(φ1)→ L2

(0,1)(φ2). Let

DT = {u ∈ L2(φ) | ∂u ∈ L2
(0,1)(φ2)}.

For any u ∈ DT , Tu = ∂u. Then DT is dense because C∞c (∆+) ⊂ DT . T is closed (has a
closed graph) because ∂ is continuous in the distribution sense: un → u =⇒ ∂un → ∂u. We
cna define T ∗ : L2

(0,1)(φ2)→ L2(φ1). Let

DT ∗ = {v ∈ L2
(0,1)(φ2) | ∃Cv such that ∀u ∈ DT , |〈v, Tu〉φ1| ≤ CV ||u||φ1}.

For v ∈ DT ∗ , one can extend 〈T ·, v〉φ2 continuously to L2(φ1), hence there exists T ∗v ∈ L2(φ1)
such that for any v ∈ DT , 〈Tu, v〉φ2 = 〈u, T ∗v〉φ1 .

Facts:

• For any u ∈ DT , v ∈ DT ∗ , we have 〈Tu, v〉φ2 = 〈u, T ∗v〉φ1 .

• T ∗ is closed.

• DT ∗ is dense in L2
(0,1)(φ2).
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• Im(T )⊥ ⊂ Ker(T ∗).

Proposition 5.8. Let F be closed subspace of L2
(0,1)(φ2) such that Im(T ) ⊂ F . Then F =

Im(T ) if and only if for any f ∈ F ∩DT ∗ we have

||f ||φ2 ≤ C(||T ∗f ||φ1).

Proof. If F = Im(T ), B = {f ∈ F ∩ DT ∗ | ||T ∗f ||φ1 ≤ 1}, for any v ∈ F take u such that
Tu = v. For any f ∈ B, we have

|〈v, f〉| = |〈Tu, f〉| = |〈u, T ∗f〉| ≤ ||u||φ1 .

Then for any v ∈ F , supf∈B |〈v, f〉| <∞. Thus supf∈B ||〈·, f〉|| <∞ (by Banach-Steinhaus).
Since ||〈·, f〉|| = ||f ||φ2 , B must be bounded by some C, so for any f ∈ DT ∗ ∩ F , ||f ||φ2 ≤
C||T ∗f ||φ1 .

Conversely, assume that for any f ∈ F ∩DT ∗ , we have ||f ||φ2 ≤ C||T ∗f ||φ1 . Let g ∈ F .
We claim that for any f ∈ DT ∗ , |〈g, f〉| ≤ C||g||φ2||T ∗f ||φ1 if f ∈ F⊥ ⊂ (ImT )⊥ ⊂ KerT ∗. If
f ∈ F ∩DT ∗ , we have

|〈g, f〉| ≤ ||g||φ2||f ||φ2 ≤ C||g||φ2||T ∗f ||φ1 .

We have a well-defined Lipschitz map T ∗f 7→ 〈g, f〉φ2 , Im(T ∗) → C. Extend this to β :
L2(φ1) → C with ||β|| ≤ C||g||φ2 (this is possible by Hahn-Banach). Take u ∈ L2(φ1) such
that β = 〈·, u〉. Then ||u||φ1 = ||β|| ≤ C||g||φ2 and for any f ∈ DT ∗ , 〈u, T ∗f〉 = 〈g, f〉. For
any f ∈ DT ∗∗ = DT and f ∈ DT ∗ , 〈Tu, f〉 = 〈g, f〉. Since DT ∗ is dense, this implies that
g = Tu and ||u|| ≤ C||g||.

Now define S : L2
(0,1)(φ2)→ L2

(0,2)(φ3) as S = ∂. To prove Hormander’s theorem, we need
to show:

∃ c such that ∀f ∈ DT ∗ ∩KerS, ||f ||φ2 ≤ C||T ∗f ||φ1
∃ c such that ∀f ∈ DT ∗ ∩DS, ||f ||φ2 ≤ C(||T ∗f ||φ1 + ||Sf ||φ3).

Fact (without proof):
There exist C > 0, φ1, φ2, φ3 : ∆+ → R (smooth) such that

1. 0 = φ1 = φ2 = φ3 on r′∆+

2. φ3 ≥ φ2 ≥ φ1

3. ||f ||2φ2 ≤ C2(||T ∗f ||2φ1 + ||Sf ||2φ3).

Applying the proposition: for any g ∈ L2
(0,1)(φ2) such that ∂g = 0, there exists u ∈ L2(φ1)

such that ∂u = g and ||u||φ1 ≤ C||g||φ2 .
Fact: If g is smooth then u is also smooth.
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Then g ∈ W s implies that u ∈ W s+1, and g smooth implies that u ∈ W s for all s, so by
Sobolev’s lemma u is in fact smooth.

Finally, we want a bound for n:

||u||2L2(r′∆+) =

∫
r′∆+

|u|2 =

∫
r′∆+

|u|2e−φ1 ≤ C2||g||2φ2 ≤ K||g||2L2(∆+).

6 Quantitative Transversality in Symplectic Geometry

II - Jean-Paul Mohsen

We discuss applications of Donaldson’s techniques to

1. symplectic manifolds

2. symplectic submanifolds and real hypersurfaces

3. contact manifolds (Ibort, Martinez, Presas)

4. symplectic isotopies (Auroux).

Let V,W be Hermitian vector spaces and A : V → W a C-linear map. For A just
linear over R, we can write A = A′ + A′′. Then ||A′′|| < SurjA implies that KerA is an
“approximately complex subspace”.

Recall that

SurjA = min
||λ||=1, λ R−linear functional on W

||λ ◦ A||.

Proposition 6.1. For any ε > 0, there exists η > 0 such that ||A′′|| < ηSurjA implies that,
for any v ∈ KerA with ||v|| = 1, there exists w ∈ KerA with d(iv, w) < ε.

Proof. Let

E = {µ ∈ V ∗ with µ|KerA = 0} = {µ = λ ◦ A | λ ∈ W ∗}.

For v ∈ KerA, we have

A(iv) = iA′v − iA′′v = −2iA′′v.

Then

|µ(iv)| = |λ(A(iv))| = 2|λ(iA′′v)|
≤ 2||λ|| ||A′′|| ≤ 2η||λ||SurjA

≤ 2η||λ ◦ A||
= ε||µ|| for ε = 2η.
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But then

min
w∈KerA

d(iv, w) = ||v2|| = max
µ∈E, ||µ||=1

|µ(iv)|,

where iv = (v1, v2) ∈ KerA⊕Ker A⊥.

We have the following corollary:

Theorem 6.2. Let s be a section of the Hermitian vector bundle Lk⊗E, and let Σ = s−1(0).
Then

||∇′′s|| << Surj ∇s =⇒ Σ is a symplectic submanifold.

Now let H ⊂ V be a real hyperplane. Recall that the Levi complex hyperplane is given
by H ∩ iH.

Proposition 6.3. 1. If A is C-linear, we have Surj A|H = Surj A|H∩iH .

2. If A is R-linear, then Surj A|H − 2||A′′|| ≤ Surj A|H∩iH ≤ Surj A|H .

Proof. 1. Let λ : W → R with ||λ|| = 1 such that ||λ ◦ AH∩iH || = SurjAH∩iH . Write
H = Rx + H ∩ iH. Observe that there exists θ such that λ(eiθAx) = 0. Then let
λθ(w) = λ(eiθw). We have

SurjAH∩iH ≤ SurjAH (since H ∩ iH ⊂ H)

≤ ||λθ ◦ A||
= ||λθ ◦ AH∩iH ||
= ||λ ◦ AH∩iH || (since A is C− linear)

= Surj AH∩iH .

2. We have

Surj AH∩iH ≥ Surj A′H∩iH − ||A′′|| (by the Lipschitz property of Surj)

= Surj A′|H − ||A′′||
≥ Surj AH − 2||A′′||.

Theorem 6.4. Let s0 be an approximately holomorphic section of Lk⊗E and V1 a subman-
ifold. Then there exists s ≈ s0 such that for any p ∈ V1, we have

η ≤ max(||s||, Surjgk(∇s)TV1).

Theorem 6.5. Assume now that V1 is a real hypersurface. With the same s0 and s as above,
we also have

η/2 ≤ max(||s||, Surjgk(∇s)TV1∩iTV1).
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Proof. We have

Surjgk(∇s)TV1∩iTV1 ≥ Surjgk(∇s)TV1 − 2||∇′′s||
≥ Surj(∇s)TV1 − 2C/

√
k (since s is approximately holomorphic)

≥ Surj(∇s)TV1 − η/2 (since k >> 1).

Contact theory:

Let (V, ω = dαV ) be an exact symplectic manifold and let V1 ⊂ V be a real hypersurface.
We call V1 contact if αV restricts to a contact form on V1. We assert that there exists an
ω-compatible almost complex structure J on V such that ξ = Kerα is a complex subspace.

Theorem 6.6. Let sV be an appromxiately holomorphic section of Lk ⊗E and let s denote
its restriction to V1. Let Σ1 = s−1(0) ⊂ V1. Suppose that for any p ∈ Σ1, ||∇′′sV || <<
Surj(∇(s))ξ (which can be achieved by the above). Then Σ1 is a contact submanifold (in V1)
of codimension 2rankC(E).

Isotopy properties:

Consider the following data:

• (X,ωX), (Y, ωY ), (X × Y, ωX ⊕ ωY )

• LX complex line bundle with curvature −iωX

• LY complex line bundle with curvature −iωY

• EX Hermitian vector bundle

• L = LX ⊗ LY complex line bundle with curvature −i(ωX ⊕ ωY )

• sX section of LkX ⊗ EX

• sY section of LkY

• sX ⊗ sY section of Lk ⊗ Ex.

Theorem 6.7. With the usual symplectic data V, ω, J, g, L, let s1, s2 be approximately holo-
morphic sections of Lk⊗E which are η-transverse to 0. Then there exists an isotopy (st)t∈[1,2]

such that for any t:

• st is approximately holomorphic

• st is η1-tranverse to 0.
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Proof. Let V2 = V × C and V3 = V × [1, 2]. Then TV3 = TV × R and the Levi direcitons
are given by TV ⊗{0}. Let s = s1⊗ sk,1 + s2⊗ sk,2. The transversality theorem gives σ ≈ s,
where σ is η-transverse to 0. Along p ∈ V3, we have

max(||σ||, Surjgk(∇σ)TV⊗{0}) ≥ η1,

so we get a family

s1 −→ σ1 −→ σt −→ σ2 −→ s2,

where the extrapolation between s1 and σ1 can just be taken as (1− t)s1 + tσ1, again by the
Lipschitz property of Surj.

7 Yomdim’s Theory - Sylvain Courte

Let P ∈ P∗d = {P : Bm → R polynomial of deg ≤ d, | 1 is a regular value of P and P |Sm−1}.
Let Σ = {P = 1}. Our goal is to bound the complexity of σ in terms of d. Here by complexity
we mean:

• the number of connected components (c.c.)

• the diameter of connected components in the “path-length” metric.

Theorem 7.1. (Yomdin, Donaldson, Gromov) There are constants C and ν (depending only
on m) such that for any P ∈ P∗d and Σ = {P = 1}, we have

• #c.c.(Σ) ≤ Cdν

• diam(c.c.(Σ)) ≤ Cdν.

Notation: We will call a quantity assigned to P ∈ P∗d p-bounded if it satisfies such a
bound as above. Also, a set is p-bounded is #c.c. and diam(c.c.) are p-bounded.

Remark 7.2. 1. If a set if covered by a p-bounded number of (connected) sets of p-
bounded diameter, then it is p-bounded.

2. Ω = {P ≤ 1} is also p-bounded.

Proof. Let {Σi} denote the connected components of Σ, and let Ωi = {x ∈ Ω | dΩ(x,Σi) ≤ 2}.
We claim that Ω = ∪Ωi and diam(Ωi) ≤ 2 + diamΣi + 2, so Ω is p-bounded by 1).

Application of the theorem: Let ε > 0 and let g be a complex polynomial of degree ≈
− ln ε, with g : B2n ⊂ Cn → C. Then for P = |∂g|2

ε2
(a real polynomial) we consider

Ω = {P ≤ 1} = the set of ε− critical points

g(Ω) = the set of ε− critical values
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and we have

#c.c.(Ω) ≤ C(− ln ε)ν

diam c.c.(Ω) ≤ C(− ln ε)ν .

By the mean value theorem, we have

area(g(Ω)) ≤ C(− ln ε)νC(− ln ε)νε2 → 0 as ε→ 0.

Proof of theorem. We use induction on m.
m = 1: Σ consists of a most d points.

m = 2: Let E ⊂ [−1, 1] be the set of exceptional values for t, where we view P as a function
of z and t:

E = {P = 1, z2 + t2 = 1} ∪ {P = 1,
∂P

∂z
= 0}.

By Bezout’s theorem, we have |E| ≤ 2d + d(d − 1). So we’ve covered Σ by a p-bounded
number of sets. As for their diameters, we will use Crofton’s formula:

Theorem 7.3. For C a curve in Rm, we have∫
AGr(m−1,m)

#(C ∩ P )dP = K · length(C),

where AGr(m− 1,m) denotes the affine Grassmannian of hyperplanes.

The application of Crofton’s formula is as follows. For C an algebraic curve of degree
d in Bm, for almost every P we have #(C ∩ P ) ≤ d, so length(C) ≤ d. Thus for m = 2,
Crofton’s formula implies that C = Σ has p-bounded length.

m− 1 =⇒ m:
Let Rm = R × Rm−2 × R, with respective coordinates t, yi, z, where we think of z as

the “height function”. Let π : Σ → [−1, 1] be the projection onto the t coordinate and let
Σt = π−1(t). Let

C = {P = 1,
∂P

∂yi
= 0} = ∪tCrit(z|Σt)

(note that this is a “curve”).
We will need to arrange some general position conditions:

1. (±1, 0, 0) /∈ Σ

2. C is a smooth curve intersecting Sm−1 transversally

3. for all but finitely many t, Σt is smooth and tranverse to Sm−1
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Figure 1: Depiction of the accidents (for m = 3).
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4. for all but finitely many t, z|Σt is Morse.

Let E = {”accidental parameters” t} ∪ {±1}.

Lemma 7.4. For any d, there exists an open and dense subset P∗∗d ⊂ P∗d such that (1),(2),(3),(4)
are satisfied and E is p-bounded.

Restricting to P ∈ P∗∗d , [−1, 1]\E = ∪Jβ is a union of open intervals. Let Σβ = π−1(JB).
By induction, Σβ has a p-bounded number of connected components.

As for diameter, obesrve that there are two kinds of components of Σβ. Let {Σi
β} be the

connected components. The either:
i) Σi

β does not meet Sm−1. Let x1, x2 ∈ Σi
β correspond to t1 and t2. Then d(x1, x2) ≤

diam(Σi
β, t1) + length(C) + diam(Σi

β, t2). The first and third terms are p-bounded by induc-
tion, while the second term is p-bounded by Crofton’s formula.

ii) Σi
β touches Sm−1. Then similarly, Σ ∩ Sm−1 is p-bounded by induction.

Now let Σ∗ = ∪Σβ = Σ \ π−1(E). Then Σ∗ is covered by a p-bounded number of sets of

p-bounded diameter. Σ∗ is dense in Σ, so Σ = ∪i,βΣi
β, hence diamΣi

β is p-bounded, which
implies the result.

Now to tie the remaining loose ends, how do we go from P∗∗d to P∗d? We have that for
any P ∈ P∗∗d , #c.c.(Σ) ≤ Cdν and diam(c.c.(Σ)) ≤ Cdν . We claim:

1. #c.c.(Σ) is locally constant on P∗d (this is an artifact of the conditions on ∗)

2. diamc.c.(Σ) is smooth in P∗d .

Crofton’s formula:
We claim that Gr(m− k,m) has a unique O(m)-invariant probability measure. We can

then use the fibration AGr(m − k,m) → Gr(m − k,m) with fiber Rk to get a measure on
AGr(m− k,m).

Now we have

Theorem 7.5. There exists c(k,m) such that for any Xk submanifold of Rm, we have∫
Agr(m−k,m)

#(X ∩ P )dP = c(k,m)volk(X).
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Proof. We have∫
Agr(m−k,m)

#(X ∩ P )dP =

∫
P∈Gr(m−k,m)

∫
v∈P⊥

#(X ∩ (P + v))dvdP

=

∫
P

∫
v

#π−1
p (v)dvdP (πp : X → P⊥)

=

∫
P

∫
X

|Jac dπp(x)|dxdP

=

∫
X

∫
P

|Jac dπp(x)|dPdx

= c(k,m)

∫
X

dx

= c(k,m)vol(X),

where we have used the change of variables formula, Fubini’s theorem, and we have noted
that

∫
P
|Jacdπp(x)|dP is independent of x.

8 Transversality in Gromov-Witten Theory - Chris Wendl

References:

• Cieliebak-Mohnke ’07 - genus 0 case

• Ionel-Parker ’13

• A. Gerstenberg, A. Krestienchine - PhD theses to appear

• The MathSciNet review of Cieliebak-Mohnke by Usher.

8.1 The Problem (in Genus 0)

To a symplectic manifold (V 2n, ω) we want to associate Gromov-Witten invariants GW
(V,ω)
0,m,A :

H∗(V,Q)⊗m → Q for m ≥ 0 and A ∈ H2(V ), which requires an associated almost complex
structure J which is ω-tame. Morally, this invariant counts “the number of J-holomorphic
spheres u : S2 → V homologous to A with m marked points z1, ..., zm ∈ S2 such that for
j = 1, ...,m, there exists u(zj) a submanifold Poincare dual to αj. Here GW

(V,ω)
0,m,A(α1, ..., αn)

“equals” ∫
MA

0,m(V,J)

ev∗1α1 ∪ ... ∪ ev∗mαm,

where

MA
0,m(V, J) = {(u : S2 → V, z = (z1, ..., zm) ∈ (S2)m (distinct points) |

∂u = 0, [u] = A}/biholomorphic reparametrization.
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Figure 2: In order for the last degeneration to be stable, the homology classes must satisfy
A1, A2 6= 0.

Then for j = 1, ...,m we have evaluation maps evj :MA
0,m(V, J)→ V . Using the Fredholme

index, we can compute the virtual dimension over R ofMA
0,m(V, J) to be 2(n−3)+2c1(A)+

2m.
Here MA

0,m(V, J) is the set of stable nodal J-holomorphic curves, where “stable” means
that for each constant component, we have

# marked points + # nodes ≥ 3.

Setting ∂M :=M\M, we have

∂M = ∪ strata with virtual dimension ≤ vir. dim M− 2.

If (*) all moduli spaces are smooth (manifolds or orbifolds) of dim = virtual dim (really

we want the linearized Cauchy-Riemann operators to be surjective) then ev :MA

0,m(V, J)→
V m is a (rational) “pseudocycle”) (c.f. McDuff-Salamon).

The Problem: (*) is almost never satisfied...
Perturbing J generically makes M smooth only near simple curves (i.e. not multiply

covered); it fails if there is symmetry.

8.2 Part of the Solution (“If You’re Not Part of the Solution
You’re Part of the Problem”)

If m ≥ 3, then

MA
0,m(V, J) ∼= {(u : S2 → V, (0, 1,∞, z4, ..., zm) | ∂Ju = 0, [u] = A}.

Idea: replace J(p ∈ V ) with J(z ∈ S2, p ∈ V ) (generic). Then

du(z) + J(z, u(z)) ◦ du(z) ◦ i = 0,
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hence MA
(0,m)(V, J) is a smooth manifold of dim = vir. dim. This helps with the multiple

covering transversality, but there’s still a drawback: when bubbling occurs, a bubble may
correspond to a single point in the domain but could still be multipy covered, in which case
transversality still fails.

Idea (Ruan / McDuff-Salamon): Assume (V, ω) is semipositive, i.e. for any A ∈ π2(V ), if
ω(A) > 0 and c1(A) ≥ 3−n, then c1(A) ≥ 0. Now codim∂M≥ 2, hence the Gromov Witten
invariants are actualy Z-valued. Note that this condition does not rule out multiple-covering
in bubbles, but they are ruled out for index reasons.

8.3 A Fantasy of a Solution (for the Non-Semipositive Case)

We have a forgetful map

π :MA

0,m(V, J)→ M̂0,m = {nodal Riemann sphere with m marked points}.

Idea: Let J depend on points p = u(z) ∈ V , π(u) =: Σz ∈ M̂0,k.
Problems:

1. When m = 0, M̂0,0 = {pt}, so M̂0,0 doesn’t “know” about bubbling.

2. Even for stable maps, we are forced to consider unstable domains, and unfortunately
the moduli space of unstable Riemann spheres with its natural topology is not even
Hausdorff...

Recap: We want J to depend on points in M0,m (stable nodal Riemann spheres) and
ensure that only stable domains appear.

8.4 Making Fantasy Reality

For [ω] ∈ H2(V ;Z), let Wk ⊂ V be a Donaldson hypersurface of degree k ∈ N. For a fixed J
(ω-compatible), we can assume Wk is “almost J-holomorphic” for k >> 0, i.e. there exists
J ′ C0-close to J such that Wk is J ′-holomorphic (J ′ may be just ω-tame).

Then u ∈ M0,m(V, J ′) implies that [u] · [Wk] = kω(u) =: l ≥ k. Unless u is contained in
Wk, generically it intersects Wk at l points, hence it has l! lifts to an element of

M0,m+l(V, J
′,Wk) := {u ∈M0,m+l(V, J

′) |
for the last l marked points zl, ..., zl+m, u(zl), ..., u(zl+m) ∈ Wk}.

Idea: This will force domains to have at least 3 marked points!

Lemma 8.1. Given an ω-compatible J and an almost J-holomorphic hypersurface Wk for
k >> 1, J has a C0-small neighborhppd UJ ⊂ {C∞ ω − tame a.c.s.} such that

1. There exists k∗ > 0 depending only on (V, ω, J) such that for any J ′ ∈ UJ , all J ′-
holomorphic spheres u : S2 → V satisfy c1(u) ≤ k∗ω(u)
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2. for any k >> 1, UJ,Wk
= {J ′ ∈ UJ | Wk is J ′ − holomorphic} is non-empty and

connected.

Lemma 8.2. If k is sufficiently large and J ′ ∈ UJ,Wk
generic, then there are no J ′-holomorphic

spheres contained in Wk.

Proof. Assume u : S2 → Wk is without loss of generality simple. Its index as a curve in Wk

is

0 ≤ ind(u) = 2(n− 4) + 2〈c1(TWk), [u]〉

where c1(TWk) = c1(TV |Wk
)− c1(NWk

) = c1(TV |Wk
)− k[ω|Wk

], hence

ind(u) = 2(n− 4) + 2c1(u)− kω(u)

≤ 2(n− 4)− 2(k − k∗)ω(u)

≤ 2(n− 4)− 2(k − k∗) < 0

if k >> 1.

Lemma 8.3. If k is sufficiently large and J ′ ∈ UJ,Wk
generic, then every nonconstant J ′-

holomorphic u : S2 → V intersects Wk in at least 3 distinct points of its domain.

Proof. Let u : S2 → V be without loss of generality simple. Let u−1(Wk) = {z1, ..., zN},
where the local intersection index at zj is lj ∈ N. Then

∑N
j=1 lj = [u] · [Wk] = kω(u). Now

u belongs to the moduli space of curves with N marked points intersecting Wk with these
conditions, and so

0 ≤ vir. dim. = 2(n− 3) + 2c1(u) + 2N − 2kω(u)

≤ 2(n− 3) + 2(k∗ − k) + 2N,

hence if k >> 0, then also N >> 0.
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