Notes from 2013 La Llagonne Summer School on Donaldson Hypersurfaces

Kyler Siegel

September 19, 2013

Contents

1	Introduction - Patrick Massot1.1Line Bundles	2 3 4 6 6
2	Peak Sections - Marco Mazzucchelli2.1Building Almost Holomorphic Sections2.2More on Peak Sections	8 8 10
3	Quantitative Transversality in Symplectic Geometry - Jean-Paul Mohsen	12
4	Global Theory Modulo Quantitative Sard's Theorem - Vincent Humilière4.1Coloring and Strategy.4.2Controlled Transversality.4.3Estimates for the f_i 's.4.4Induction on Colors.	15 15 16 17 18
5	Quantitative Sard's Theorem Modulo Yomdim's Results - Thomas Le- tendre	20
6	Quantitative Transversality in Symplectic Geometry II - Jean-Paul Mohsen	27
7	Yomdim's Theory - Sylvain Courte	30
8	Transversality in Gromov-Witten Theory - Chris Wendl8.1The Problem (in Genus 0)8.2Part of the Solution ("If You're Not Part of the Solution You're Part of the	34 34
	$Problem") \ \ldots \ \dot{ \ } \ \ldots \ \ldots$	35

8.3	A Fantasy of a Solution (for the Non-Semipositive Case)	36
8.4	Making Fantasy Reality	36

1 Introduction - Patrick Massot

Theorem 1.1. (Donaldson '96)

If (V, ω) is a closed symplectic manifold with $\frac{1}{2\pi}[\omega] \in H^2(V, \mathbb{Z})$, then for k >> 1 there exists Σ symplectic of codimension 2 such that $[\Sigma] = PD(\frac{k}{2\pi}[w])$.

Here $\frac{1}{2\pi}[\omega] \in H^2(V,\mathbb{Z})$ means $\forall s \in H_2(V,\mathbb{Z}), \frac{1}{2\pi} \int_S \omega \in \mathbb{Z}$. This means that $\frac{k}{2\pi} \int_S \omega = \Sigma \cdot S$.

Remark 1.2.

- Recall that Gromov's h principle builds symplectic submanifolds which are either open or of codimension ≥ 4 .
- If V is Kahler, then Kodaira gives an embedding $V \hookrightarrow \mathbb{CP}^N$ and $\Sigma = V \cap (hypersurface \ in \mathbb{CP}^N)$.
- Any holomorphic curve in V has nonzero symplectic area, hence has to intersect Σ. This is the basis of Cieliebak-Mohnke (see Chris Wendl's talk).
- In dimension 4, the theorem can be used to construct holmorphic curves. Some applications: studying H^{*} of Hilbert schemes, and showing that $M^3 \times S^1$ symplectic implies that M fibers over S^1 .

Theorem 1.3. (Biran, Giroux)

There is a D^2 -bundle over Σ whose complement is isotropic.

Some related notions:

- The complement of Σ is Weinstein.
- One can fully (w.r.t. volume) fill V by an ellipsoid.
- Biran, Cieliebak: symplectic or Lagrangian embeddings
- Evans: Nijenhuis energy
- Symplectic isotopies and symplectic mapping class groups

Remark 1.4.

• In the theorem, $\Sigma = s^{-1}(0)$, where $s: V \to L^k$ is a section (here L^k the is k-fold tensor product of L with itself).

• Donaldson also constructs pairs s_1, s_2 such that $B = (s_1, s_2)^{-1}(0, 0)$ is a codimension 4 symplectic submanifold, and

$$V \setminus B \to \mathbb{CP}^1, \quad x \mapsto [s_1(x) : s_2(x)]$$

is a Lefshetz pencil.

- After blowing up B, we get a Lefshetz fibration $\tilde{V} \to \mathbb{CP}^1$.
- Auroux showed that with a third section in dimension 4, V⁴ becomes a branched cover of CP².
- There is also a contact version: Ibort-Martinez-Presas show how to construct contact submanifolds.
- Giroux-Mohsen show how to construct open book decompositions.
- Casals-Pancholi-Presas construct contact structures in dimension 5.
- There are applications to rational convexity.

There are also some connections with fields:

- Existence of Kahler-Einstein metrics on Fano manifolds
- Statistics in real algebraic geometry
- Yomdin: dynamical systems, entropy

1.1 Line Bundles

Let V be a smooth manifold, $V = \bigcup_{i=1}^{N} U_i$. Assume each U_i , $U_{ij} := U_i \cap U_j$, and $U_{ijk} := U_i \cap U_j \cap U_k$ is contractible. Let $\pi : L \to V$ be a line smooth. We have trivializations:

with

$$\phi_i \circ \phi_j^{-1} : U_{ij} \times \mathbb{C} \to U_{ij} \times \mathbb{C}, \quad x \mapsto (x, g_{ij}(x))$$
$$g_{ij} : U_{ij} \to \mathbb{C}^*,$$

satisfying the "cocycle condition":

$$g_{ij}g_{ji} = 1$$
$$g_{ij}g_{jk} = g_{ik}$$

Conversely, we can use the g_{ij} 's (satisfying the cocycle condition) to build the line bundle L.

If $g_{ij}(x) \in U(1)$, we get a Hermitian structure. If $L \to V$ and $L' \to V$ are two line bundles with transition functions $g_{ij}(x)$ and $g'_{ij}(x)$, the transitions functions for the line bundle $L \otimes L' \to V$ are given by $g_{ij}(x)g'_{ij}(x)$. Note that for s a section of L, we get locally $s_i: U_i \to \mathbb{C}$.

Example 1.5. Let $V = \mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$, with $U_0 = \mathbb{C}$, $U_1 = \mathbb{CP}^1 \setminus \{0\}$. Then the transition function $g_{01}(z) = z^n$ builds the line bundle $O(n) \to \mathbb{CP}^1$. One can check that holomorphic sections of O(n) correspond to degree $\leq n$ polynomials, and that for such a section s we have $s^{-1}(0) = n$ points.

1.2 Connections

Recall that a connection ∇ is given by $\nabla : \Gamma(L) \to \Gamma(T^*V \otimes L)$ such that

$$\nabla(fs) = df \otimes s + f\nabla s.$$

We say that ∇ is *Hermitian* if

$$d\langle s_1, s_2 \rangle = \langle \nabla s_1, s_2 \rangle + \langle s_1, \nabla s_2 \rangle.$$

Recall that over $U_i \nabla$ can be written as

$$\nabla = d + A_i,$$

where A_i is a complex valued 1-form on U_i . If ∇ is Hermitian, then A_i will be purely imaginary.

One can compute that on U_{ij} , $A_i = A_i + g_{ij}^{-1} dg_{ij}$, where $g_{ij}^{-1} dg_{ij}$ is closed, and hence $dA_i = dA_j$. This means we get a well-defined curvature 2-form $F := dA_i$ on V.

Theorem 1.6. (Chern-Weil)

Let $F = -i\omega$ be the curvature of a Hermitian line bundle $L \to V$, and let s be a section, transverse to the zero section, with $\Sigma = s^{-1}(0)$. Then for Z any 2-cycle transverse to Σ , we have

$$\frac{1}{2\pi} \int_Z \omega = Z \cdot \Sigma.$$

Note here that $\frac{1}{2\pi}[\omega] \in H^2(V,\mathbb{Z}).$

Proof. Fix $\epsilon > 0$, and set

$$V_{\epsilon} = \{ |s| \ge \epsilon \}$$
$$Z_{\epsilon} = Z \cap V_{\epsilon}.$$

On $V_{\epsilon}, \ \frac{\nabla s}{s}$ is a well-defined complex valued 1-form satisfying

$$d\left(\frac{\nabla s}{s}\right) = -i\omega$$

(since locally we have $\nabla s_i = ds_i + A_i s_i$, hence $d\left(\frac{\nabla s_i}{s_i}\right) = d\left(\frac{ds_i}{s_i}\right) + dA_i = -i\omega$). Then we have

$$\int_{Z} (-i\omega) = \lim_{\epsilon \to 0} \int_{Z_{\epsilon}} (-i\omega)$$
$$= \lim_{\epsilon \to 0} \int_{Z_{\epsilon}} d\left(\frac{\nabla s}{s}\right)$$
$$= \lim_{\epsilon \to 0} \int_{\partial Z_{\epsilon}} \frac{\nabla s}{s}.$$

Note that as ϵ goes to zero, the last integral is supported in an arbitrarily small neighborhood of $\Sigma \cap Z$. Therefore it will suffice to evaluate the limit near each point of $\Sigma \cap Z$. Near such a point, we can assume there are coordinates in some neighborhood $U \subset U_i$ such that

$$s(r_1, \theta_1, r_2, \theta_2, ...) = r_1 e^{i\theta_1}.$$

We then have

$$\frac{\nabla s}{s} = s^{-1}ds + A_i = d\log r_1 + id\theta_1 + A_i$$

Since

$$\lim_{\epsilon \to 0} \int_{\partial Z_{\epsilon} \cap U} A_i = 0,$$

we have

$$\lim_{\epsilon \to 0} \int_{\partial Z_{\epsilon} \cap U} \frac{\nabla s}{s} = \lim_{\epsilon \to 0} \int_{\partial Z_{\epsilon} \cap U} (d \log r_1 + i d\theta_1)$$
$$= \pm 2\pi i.$$

It follows that we have

$$\int_{Z} (-i\omega) = -2\pi i (Z \cdot \Sigma),$$

as desired

Remark 1.7. Equivalently, for any β closed (n-2)-form,

$$\frac{1}{2\pi} \int_{V} \omega \wedge \beta = \int_{\Sigma} \beta.$$

1.3 From Cohomology to Line Bundles

Theorem 1.8. Let ω be a closed 2-form on V. If $[\omega/2\pi] \in H^2(V,\mathbb{Z})$, then there exists a line bundle $L \to V$ and a Hermitian connection ∇ on L such that $F = -i\omega$ (here F is the curvature 2-form of ∇).

Proof. Fix an open covering $V = \bigcup_{i=1}^{N} U_i$ and β_i a 1-form on U_i such that $\omega = d\beta_i$ on U_i . We want to find certain $g_{ij} : U_{ij} \to U(1)$ satisfying the cocycle condition. On U_{ij} , $d(\beta_i - \beta_j) = \omega - \omega = 0$, so there exists $f_{ij} : U_{ij} \to \mathbb{R}$ such that $df_{ij} = \beta_i - \beta_j$. On U_{ijk} , we have $d(f_{jk} - f_{ik} + f_{ij}) = 0$, and hence $f_{jk} - f_{ik} + f_{ij} = a_{ijk}$ for some constant a_{ijk} . Claim: $[\frac{\omega}{2\pi}] \in H^2(V,\mathbb{Z})$ implies that we can choose the f_{ij} 's such that $a_{ijk} \in \mathbb{Z}$. We then set $g_{ij} = \exp(2\pi i f_{ij})$ and $A_i = -i\beta_i$. Note that the cocycle condition for g_{ij} follows from the fact that $a_{ijk} \in \mathbb{Z}$. Moreover, we have

$$A_j - A_i = i\beta_i - i\beta_j = idf_{ij} = g_{ij}^{-1}dg_{ij},$$

so the A_i 's indeed define a connection on the line bundle defined by the g_{ij} 's. Of course, $dA_i = -id\beta_i = -i\omega$, as desired.

1.4 Back to Donaldson's Result

Theorem 1.9. (Donaldson '96)

Suppose ω is a symplectic form on a closed manifold V, with $[\omega/(2\pi)] \in H^2(V,\mathbb{Z})$ and $L \to V$ is a line bundle having a connection with curvature $-i\omega$. Then there exists a sequence of sections $s_k \in \Gamma(L^k)$ and constants $C, \delta > 0$ such that for k >> 0,

- $\forall x, |\overline{\partial}s_k(x)| \le C/\sqrt{k}$
- $\forall x, |s_k(x)| \leq \delta \Rightarrow |\nabla s_k(x)| \geq \delta.$

Remark 1.10.

- The connection ∇ on L gives rise to a connection (also denoted by ∇) on L^k with curvature multiplied by k.
- The estimates in the theorem are with respect to some fixed compatible almost complex structure J.
- In our notation, we have

$$\overline{\partial}s = \frac{1}{2}(\nabla s + i\nabla s \circ J)$$
$$\partial s = \frac{1}{2}(\nabla s - i\nabla s \circ J).$$

- In Giroux's notation, $\nabla' s = \partial s$ and $\nabla'' s = \overline{\partial} s$. Some authors also use $\nabla^{1,0} s = \partial s$ and $\nabla^{0,1} s = \overline{\partial} s$.
- On V, we use the metric $g_k(\cdot, \cdot) := k\omega(\cdot, J \cdot)$ when discussing properties of the line bundle L^k . Note that we're using pointwise norms.

Of fundamental importance is the following algebraic lemma:

Lemma 1.11. If $A : \mathbb{C}^n \to \mathbb{C}$ is \mathbb{R} -linear and $||A^{0,1}|| < ||A^{1,0}||$ (w.r.t the Euclidean metric on \mathbb{C}^n) then ker A is a codimension 2 symplectic subspace.

Proof. Consider the adjoint map $A^* : \mathbb{C} \to \mathbb{C}^n$. Then

$$(A^{0,1})^* = (A^*)^{0,1} : \mathbb{C} \to \mathbb{C}^n (A^{1,0})^* = (A^*)^{1,0} : \mathbb{C} \to \mathbb{C}^n,$$

where the first map is anti \mathbb{C} -linear and the second map is \mathbb{C} -linear.

Now set

$$\begin{aligned} v' &= (A^{1,0})^*(1), \quad ||(A^{1,0})^*|| = ||v'|| \\ v'' &= (A^{0,1})^*(i), \quad ||(A^{0,1})^*|| = ||v''|| \end{aligned}$$

By hypothesis, $||v'|| \neq ||v''||$. Now let ω_0 denote the standard symplectic form on \mathbb{C}^n , so

$$\omega_0(A^*1, A^*i) = \omega_0(v' + v'', iv' - iv'')$$
$$= ||v'||^2 - ||v''||^2 \neq 0$$

It follows that $\operatorname{span}(A^*1, A^*i)$ is a symplectic subspace of \mathbb{C}^n . Then $\operatorname{Ker} A = (\operatorname{Im} A^*)^{\perp} = i(\operatorname{Im} A^*)^{\omega_0}$ (here the superscript ω_0 denotes the symplectic orthogonal complement). Thus $\operatorname{Im} A^*$ is symplectic, and therefore so is $(\operatorname{Im} A^*)^{\omega_0}$ and hence $\operatorname{Ker} A$.

Our goal is to build s_k 's which are

- 1. asymptotically holomorphic: $|\overline{\partial}s)k| \leq C/\sqrt{k}$
- 2. uniformly transverse to 0: $|s| \leq \delta \Rightarrow |\nabla s| \geq \delta$.

The outline of the rest of the talks is roughly:

- Marco: build model sections in a Darboux chart. In the model, ω and the ∇ are standard but J is non-integrable. But as $k \to \infty$, a "zoom effect" kills the effect of the non-integrability. After proving some estimates, we will thus have lots of examples of asymptotically holomorphic s_k 's.
- Vincent: Choose among these a uniformly transverse sequence admitting a quantitative version of Sard's theorem.
- Thomas: Prove the quantitative version of Sard's theorem modulo some results about the complexity of semi-algebraic subsets of \mathbb{C}^n (this will involve some complex analysis).
- Sylvain: Discuss the complexity of real semi-algebraic subsets (this will be geometric).

Note: These notes also include talks discussing applications of these ideas, given by Jean-Paul Mohsen and Chris Wendl.

2 Peak Sections - Marco Mazzucchelli

2.1 Building Almost Holomorphic Sections

We now describe the recipe for building almost holomorphic sections of

$$(L^k, \nabla) \to (V, J),$$

where ∇ is a connection with curvature $-ik\omega$. We consider the local setup:

$$(L_0 = \mathbb{C}^n \times \mathbb{C}, |\cdot|, \nabla = d + A) \to (\mathbb{C}^n, \omega_0, J_0),$$

where $|\cdot|$ denotes a Hermitian inner product and $A = \frac{1}{4} \sum_{j} (z_j d\overline{z}_j - \overline{z}_j dz_j)$, $dA = -i\omega_0$. Consider the section of L_0 given by $f : \mathbb{C}^n \to \mathbb{C}$, $f(z) = \exp(-|z|^2/4)$. We claim that f is holomorphic, i.e. $\nabla^{0,1} f = 0$. Indeed,

$$\nabla^{0,1} f = d^{0,1} f + A^{0,1} f$$
$$= \overline{\partial} f + \frac{1}{4} z d\overline{z} f$$
$$= -\frac{1}{4} z d\overline{z} f + \frac{1}{4} z d\overline{z} f$$
$$= 0.$$

Then

$$\nabla f = \nabla^{1,0} f = \partial f + A^{1,0} f = -\frac{1}{2} \overline{z} dz f,$$

which we view as a section of $(T^*\mathbb{C}^n \otimes L_0, d \otimes \nabla := \widetilde{\nabla})$. Here by definition

$$\widetilde{\nabla}(\beta \otimes s) = (d\beta) \otimes s + \beta \otimes (\nabla s)$$

for β a section of $T^*\mathbb{C}^n$ and s a section of L_0 . For brevity we'll denote $\widetilde{\nabla}$ and its higher derivative cousins again by ∇ .

Now for $r \in \mathbb{N}$ we have

$$\begin{aligned} \nabla^r f &= \nabla^{r-1} \left(-\frac{1}{2} \overline{z} dz f \right) \\ &= -\frac{1}{2} \sum_{j=0}^{r-1} \binom{r-1}{j} d^j (\overline{z} dz) \otimes \nabla^{r-1-j} f \\ &= -\frac{1}{2} \overline{z} dz \nabla^{r-1} - \frac{1}{2} (r-1) d\overline{z} \otimes dz \nabla^{r-2} f, \end{aligned}$$

and therefore $|\nabla^r f| \leq P_r(|z|)f$, where P_r is polynomial of degree r (which might change from line to line).

Now let's make this section compactly supported. Let $\beta : [0, \infty) \to [0, 1]$ be a smooth function such that $\beta \equiv 1$ on [0, 1/2] and $\beta \equiv 0$ on $[1, \infty)$. For $k \in \mathbb{N}$, let $\beta_k : \mathbb{C}^n \to \mathbb{R}$ be given by

$$\beta_k(z) = \beta(k^{-1/3}|z|^2).$$

Observe that $\beta_k f$ is not a holomorphic section, but almost:

$$\begin{aligned} |\nabla^r(\beta_k f)| &\leq P_r(|z|)f\\ |\nabla^{0,1}(\beta_k f)| &= (\overline{\partial}\beta_k)f + \beta_k \nabla^{0,1}f = \beta' k^{-1/3} z d\overline{z}f\\ |\nabla^r \nabla^{0,1}(\beta_k f)| &\leq k^{-1/3} P_r(|z|)f. \end{aligned}$$

Now let's plug this local model into our $L^k \to (V, \omega, J, g := \omega(\cdot, J \cdot))$. Let $\phi : (B^{2n}(R), \omega_0) \to (V, \omega)$ be a Darboux chart with $\phi_0 = p \in V$. Without loss of generality we can assume ϕ is *J*-holomorphic at 0, i.e.

$$d\phi(0) \circ J_0 = J \circ d\phi(0).$$

For any fixed $0 \le \epsilon < 1$, we can assume (after shrinking R) that

$$(1-\epsilon)|v|_{\text{euc}} \le |v|_g \le (1+\epsilon)|v|_{\text{euc}}$$

for any $v \in TB^{2n}(R)$.

Now let $\phi_k(z) := \phi(z/\sqrt{k})$:

Note that $\phi_k : (B^{2n}(\sqrt{kR}), \omega_0) \to (V, k\omega)$ is again a symplectomorphism. Here the map $\widetilde{\phi}_k : B^{2n}(\sqrt{kR}) \times \mathbb{C} \to L^k, \ \widetilde{\phi}_k(z, v_0) = (\phi_k(z), v_1)$ is defined as follows. Let $\nabla = d + B$ be the pullback of ∇ to $B^{2n}(\sqrt{kR})$, and let v_1 be given by parallel transporting v_0 along the radial line from 0 to z in $B^{2n}(\sqrt{kR})$ using the connection d + B.

Exercise 2.1. $\widetilde{\phi}_k^* B = A$, and therefore ∇ becomes standard under $\widetilde{\phi}_k$.

Now using ϕ_k , we can push forward the section $\beta_k f$ to a compactly supported section of L^k . Note that for any $k \in \mathbb{N}$ and $v \in TB^{2n}(\sqrt{kR})$ have

$$(1-\epsilon)|v| \le |v|_{kg} \le (1+\epsilon)|v|$$

where $|v|_{kg} = \sqrt{kg((\phi_k)_*v, (\phi_k)_*v)}$. Recall that $J = J_0$ at the origin (pulling back J via ϕ_k) and therefore we have

$$|dJ| \le \frac{\text{const}}{\sqrt{k}}$$
$$|J - J_0| \le \frac{\text{const}}{\sqrt{k}} |z|$$

for constants independent of k.

Now we have

$$\nabla_{J}^{0,1}f = \frac{1}{2}(\nabla f + i\nabla fJ)$$
$$|\nabla^{r}\nabla_{J}^{0,1}f| = |\nabla^{r}(\nabla_{J}^{0,1} - \nabla^{0,1})f| = |\frac{1}{4}\nabla^{r}(\overline{z}dz \circ (J - J_{0})f)|$$

(recall that $\nabla^{0,1} f = 0$) and therefore

$$|\nabla^r \nabla^{0,1}_J f| \le k^{-1/2} P_r(|z|) f.$$

Similarly, we have

$$|\nabla^r \nabla^{0,1}_J \beta_k f| \le k^{-1/2} P_r(|z|) f.$$

But of course this estimate is still using the Euclidean metric, which we want to replace with the metric $\omega(\cdot, J \cdot)$ on V. Also, we want to replace the connection $d \otimes \nabla$ on $T^*B^{2n} \otimes L$ with $\nabla_{\text{LC}} \otimes \nabla$, where ∇_{LC} is the Levi-Civita connection. Morally, we should replace $P_r(|z|)$ with $P_r(\text{dist}_{kg}(0, z))$.

2.2 More on Peak Sections

Recall the setup: $(L^k, \nabla) \to (V, k\omega, J, kg)$, where L is a line bundle with connection ∇ of curvature $-i\omega$ inducing a connection ∇ on L^k of curvature $-ik\omega$. From last time:

Lemma 2.2. For any $p \in V$ and $k \in \mathbb{N}$ large, there is a section $s = s_{p,k}$ such that

- 1. for any R > 0, there exists $C_R > 0$ such that for k >> 0 we have $|s_{p,k}(q)| \ge C_R$ provided $dist_{kg}(p,q) \le R$
- 2. $|s_{p,k}| \le 1$
- 3. We have

$$\begin{aligned} |\nabla^r s(q)| &\leq P_r(dist_{kg}(p,q))e_k(p,q)\\ |\nabla^r \nabla^{0,1} s(q)| &\leq \frac{1}{\sqrt{k}}P_r(dist_{kg}(p,q))e_k(p,q) \end{aligned}$$

where

$$e_k(p,q) = \begin{cases} \exp(-\operatorname{dist}_{kg}(p,q)^2/5) & \text{if } \operatorname{dist}_{kg}(p,q)^2 \le k^{1/3} \\ 0 & otherwise. \end{cases}$$

To build candidate almost holomorphic sections, set

$$s = \sum_{p \in \Lambda_k} w_p s_{k,p}$$

where Λ_k is some suitable finite set of points in V, each $w_p \in \mathbb{C}$ with $|w_p| \leq 1$.

Lemma 2.3. Fix $r' \in \mathbb{N}$. Then Λ_k can be chosen (for $k \gg 0$) to be $1/\sqrt{k}$ -dense (i.e. $\cup_{p \in \Lambda_k} B_g(p, 1/\sqrt{k}) = V$) and such that for any such $\{w_p\}$ and any $0 \le r \le r'$, we have

$$|\nabla^r s| \le C_r$$
$$|\nabla^r \nabla^{0,1} s| \le C_r / \sqrt{k}.$$

In subsequent lectures we'll show that we can choose $\{w_p\}$ (for k >> 0) such that

$$|\nabla^{1,0}s| \ge \epsilon > 0$$
 on $s^{-1}(0)$,

which will imply that s is transverse to the 0-section and there $|\nabla^{0,1}s| < |\nabla^{1,0}s|$.

Proof of Lemma 2.3. For $\rho > 0$, suppose $\Lambda \subset \mathbb{R}$ is discrete with respect to ρ , i.e. $B(x, \rho) \cap B(y, \rho) = \emptyset$ if $x, y \in \Lambda$, $x \neq y$. Then for any $a, b \in \mathbb{N} \setminus \{0\}$, there exists $C_{a,b,\rho} > 0$ such that

$$\sum_{\lambda \in \Lambda} |z - \lambda|^{\alpha} \exp(-b|z - \lambda|^2) \le C_{a,b,\rho}$$

for any $z \in \mathbb{R}^n$. Here $C_{a,b,\rho}$ is independent of our choice of ρ -discrete Λ .

Now fix a finite atlas for V, $\{\phi_{\alpha} : U_{\alpha} \to V^{2n}\}$, with $U''_{\alpha} \subset U'_{\alpha} \subset U_{\alpha}$, such that $\{\phi_{\alpha}(U''_{\alpha})\}$ covers V and

$$\frac{1}{2}|x-y| \le \operatorname{dist}_g(\phi_\alpha(x), \phi_\alpha(y)) \le 2|x-y|.$$

Let $\Lambda'_k = \frac{1}{\sqrt{2nk}} (\mathbb{Z}^n \oplus i\mathbb{Z}^n)$, and note that Λ'_k is $\frac{1}{2\sqrt{k}}$ -dense in \mathbb{C}^n . Set $\Lambda_{k,\alpha} = \phi_\alpha(\Lambda'_k \cap U'_\alpha)$ and $\Lambda_k = \bigcup_\alpha \Lambda_{k,\alpha}$. Recall that $e_k(x,\lambda) = 0$ if $\operatorname{dist}_g(x,\lambda) > k^{-1/3}$, hence if $x \notin \phi_\alpha(U_\alpha)$. Now for $x \in \phi_\alpha(U_\alpha)$, we have

$$\sum_{\lambda \in \Lambda_{k,\alpha}} \operatorname{dist}_{kg}(x,\lambda)^r e_k(x,\lambda) \le \sum_{\lambda \in \Lambda'_k} 2^r k^{r/2} |\phi_{\alpha}^{-1}(x) - \lambda|^r \exp\left(\frac{-k|\phi_{\alpha}^{-1}(x) - \lambda|^2}{20}\right)$$
$$\le \sum_{\lambda \in \Lambda'_k} 2^r |k^{1/2} \phi_{\alpha}^{-1}(x) - \lambda|^r \exp\left(\frac{-k|\phi_{\alpha}^{-1}(x) - \lambda|^2}{20}\right)$$
$$\le \text{const.}$$

3 Quantitative Transversality in Symplectic Geometry - Jean-Paul Mohsen

For $A: V \to W$ a linear map between vector spaces, define

$$\begin{split} \mathrm{Inj} A &= \min_{x \in V, \; ||x||=1} ||Ax|| \\ \mathrm{Surj} A &= \min_{\lambda \in W^*, ||\lambda||=1} ||\lambda \circ A|| = \mathrm{Inj} A^*. \end{split}$$

Observe that A is injective if and only if $\text{Inj}A \neq 0$, and similarly A is surjective if and only if $\text{Surj}A \neq 0$.

The Transversalization Theorem will say that we can perturb an approximately holomorphic section of a very positive line bundle L^k to make it transverse to the zero section, with certain estimates. Let (V, ω, J, g) be an almost Kahler manifold, $L \to V$ a complex line bundle with connection ∇^L and curvature $-i\omega$, and $E \to V$ a Hermitian vector bundle with connection ∇^E .

Roughly, we have:

Theorem 3.1. For s an approximately holomorphic section of $L^k \otimes E$ with k >> 1, there exist sections s_1, s_2 of $L^k \otimes E$ such that

- $s = s_1 + s_2$
- $s_1 \pitchfork 0$ with estimates
- s_2 is small (in some C^r sense).

Remark 3.2. For $V_1 \subset V$ compact, we can replace " $s_1 \pitchfork 0$ with estimates" with " $(s_1)_{V_1} \pitchfork 0$ with estimates".

Theorem 3.3. For any $\epsilon, C > 0$, $m \in \mathbb{N}$, there exists $\delta > 0$ such that, for all k >> 1 and $s \in \Gamma(L^k \otimes E)$ satisfying

- $||s||_{kg} < C$
- $||\nabla s||_{kg} \le C$
- $||\nabla''s||_{kg} \le C/\sqrt{k}$
- $||\nabla^2 s||_{kg} \le C$
- $||\nabla(\nabla''s)||_{kg} \le C/\sqrt{k}$

there exist $s_1, s_2 \in \Gamma(L^k \otimes E)$ with $s = s_1 + s_2$ such that

- For any $p \in V_1$, $\delta \leq \max\left(||s_1(p)||, Surj_{kg}(\nabla s_1)_{T_pV_1}\right)$
- $||\nabla^i s_2||_{kg} \le \epsilon \text{ for } 0 \le i \le m$
- $||\nabla^i \nabla'' s_2||_{kg} \leq \epsilon / \sqrt{k}$ for $0 \leq i \leq m 1$.

Proof. The proof of the above theorem involves four steps:
1st step: transversality for real polynomial maps
2nd step: transversality for holomorphic maps
3rd step: local transversality for approximately holomorphic sections
4th step: global transversality for approximately holomorphic sections

We give an outline of the last three steps.

1st step: Let V, W be Hermitian vector spaces, $F : \frac{11}{10}B_V \to B_W$ a holomorphic map between balls, and $V_1 \subset V$ a real subspace. Fix $\epsilon > 0$. Then we can find $v \in W$ such that

- $||v|| \le \epsilon$
- for any $x \in V_1 \cap B_V$, max $(||F(x) v||, \operatorname{Surj}((d_x F)_{V_1})) \ge \epsilon/(\log(1/\epsilon))^N$

3rd step: We consider the case where $E = V \times \mathbb{C}^r$ is a trivial bundle over V. Let s be an approximately holomorphic section of $L^k \otimes \mathbb{C}^r$ and let $y_1 \in V_1$. Then there exist sections s_1, s_2 such that

- $s = s_1 + s_2$
- for any $y \in V_1$ with $d_{kg}(y, y_1) \leq 1$, we have $\max\left(||s_1(y)||, \operatorname{Surj}_{kg}(\nabla s_1)_{T_yV_1}\right) \geq \eta_{\epsilon}$
- $s_2 = v \otimes s_{y_1,k}$, where $v \in \mathbb{C}^r$ with $||v|| \leq \epsilon$ and where $s_{y_1,k}$ is a "peak section" of L^k at y_1
- $\eta_{\epsilon} = \epsilon / (\log(1/\epsilon))^N$.

4th step: There exists $\Lambda_k = \{y_1, ..., y_{n_k}\} \subset V_1$ such that

- $d_{kg}(y_i, y_j) \ge 1$ for any $i \ne j$
- for any $y \in V_1$, there exists *i* such that $d_{kg}(y, y_i) \leq 1$

• $\eta_k \leq Ck^{\dim V_1/2}$.

Now let $\epsilon_1 \geq \epsilon_2 \geq \ldots \geq \epsilon_{n_k} > 0$. Again take $E = \mathbb{C}^r$. Consider sections

• $s_2 = \sum_{i=1}^{n_k} v_i \otimes s_{y_i,k}$ for some $v_1, ..., v_{n_k} \in \mathbb{C}^r$ with $||v_i|| \le \epsilon_i$ for $1 \le i \le n_k$

•
$$s_1 = s - s_2$$
.

Also, consider sections

• $s_2^j = \sum_{i=1}^j v_i \otimes s_{y_i,k}$

•
$$s_1^j = s - s_2^j$$

(so $s_2 = s_2^{n_k}$ and $s_1 = s_1^{n_k}$). By Step 3, we can find v_j such that

- $||v_j|| \le \epsilon_j$
- for any $y \in V_1$ with $d_{kg}(y, y_j) \leq 1$, we have $\max\left(||s_1^j(y)||, \operatorname{Surj}_{kg}(\nabla^j s_1)_{T_y V_1}\right) \geq \eta_{\epsilon_j}$.

Then we have

$$||s_1(y)|| \ge ||s_1^j(y)|| - \sum_{i=j+1}^{n_k} ||v_i|| \cdot ||s_{y_i,k}(y)||$$

where

$$\sum_{i=j+1}^{n_k} ||v_i|| \cdot ||s_{y_i,k}(y)|| \le \sum_{i=j+1}^{n_k} \epsilon_i C \exp\left(-d_{kg}^2(y,y_i)/2\right),$$

and we have a similar estimate for $\operatorname{Surj}_{kg}(\nabla s_1)_{T_yV_1}$. Then

$$\max\left(||s_1(y)||, \operatorname{Surj}_{kg}(\nabla s_1)_{T_yV_1}\right) \ge \eta_{\epsilon_j} - \sum_{i=j+1}^{n_k} \epsilon_i C \exp\left(-d_{kg}^2(y, y_i)/2\right) =: \eta_{\epsilon_j}^*$$

Question: Can we choose $\epsilon_1 \geq \epsilon_2 \geq \ldots \geq \epsilon_{n_k} > 0$ such that $\min \eta_j^* \geq \eta > 0$ (where η is independent of k)?

Answer: No, unless we reorder the points of $\Lambda_k!$

The idea is to permute the y_i 's such that for any $i \neq j$, either |i - j| is "large enough" or else $d_{kg}(y_i, y_j)$ is "large enough".

4 Global Theory Modulo Quantitative Sard's Theorem - Vincent Humilière

In this lecture we discuss the global construction of Donaldson hypersurfaces. Recall that Marco showed how to construct a finite subset

$$\Lambda_k = \{p_1, \dots, p_{n_k}\} \subset V$$

with the following property. For for any $\underline{w} = (w_1, ..., w_{n_k})$ with $|w_j|$ for $1 \leq j \leq n_k$, let $s_{\underline{w}} = \sum_{j=1}^{n_k} w_j s_{k,p_j}$. Then there exists some C > 0 such that for any k >> 0 and any such \underline{w} , we have

$$|\nabla_J^{0,1} s_{\underline{w}}| \le C/\sqrt{k}.$$

Our goal now is to prove the following:

Proposition 4.1. There exists $\epsilon > 0$ such that for any k >> 0, there exists \underline{w} such that

$$|\nabla_J^{1,0} s_{\underline{w}}| > \epsilon \quad on \quad s_{\underline{w}}^{-1}(0).$$

Theorem 4.2. For any k >> 0, there exists a section $s: V \to L^k$ such that

$$|\nabla^{0,1}s| < |\nabla^{1,0}s|$$
 on $s^{-1}(0)$.

4.1 Coloring and Strategy

Lemma 4.3. For any D > 0, there exists $N(D) = \mathcal{O}(D^{2n})$ such that, for $k \gg 0$, Λ_k can be chosen as before with:

- Λ_k is 1-dense with respect to $d_k := d_{kg}$
- $\sum_{p \in \Lambda_k} d_k(p, \cdot)^r e_k(p, \cdot) \le C$
- Λ_k admits a partition $\Lambda_k = I_1^k \cup ... \cup I_{N(D)}^k$ such that for any $p, q \in I_\alpha$, $d(p,q) \ge D$.

Proof. As before, we have a finite atlas for V, $\{\phi_{\beta} : U_{\beta} \to V^{2n}\}$ and open sets $U''_{\beta} \subset U'_{\beta} \subset U'_{\beta} \subset U'_{\beta}$, and Λ_k was constructed such that

$$\phi_{\beta}(\Lambda_k \cap U'_{\beta}) = \frac{1}{\sqrt{2nk}} (\mathbb{Z}^n + i\mathbb{Z}^n).$$

Observe that $(\mathbb{Z}^n + i\mathbb{Z}^n)/L(\mathbb{Z}^n + i\mathbb{Z}^n)$, for $L \in \mathbb{N}$, gives a partition of $(\mathbb{Z}^n + i\mathbb{Z}^n)$ such that two elements in the same class are a distance at least L apart. Pushing this forward to V, for L large enough we get a partition of $\Lambda_k \cap U'_\beta$ such that two elements in the same class are a distance at least D apart. We take the union over β of all these partitions. \Box Our strategy will be as follows. Fix D > 0 and start with an arbitrary \underline{w}_0 . We inductively adjust the coefficients of \underline{w}_0 of color $\alpha \in \{1, ..., N(D)\}$ to get some \underline{w}_{α} . At each step, the change of coefficients

- gives some "controlled transversality" on all d_k 1-balls of color α
- does not kill the controlled transversality previously obtained on balls of color less than α .

More precisely, for any α we will find $\epsilon > 0$ such that

 $|\nabla_J^{1,0} s_{\underline{w}_{\alpha}}| > \alpha \quad \text{on} \quad s_{\underline{w}_{\alpha}}^{-1}(0) \cap \cup_{i \in I_{\beta}^k, \beta \leq \alpha} B_i,$

where B_i denotes the d_k ball of radius 1 centered at p_i .

4.2 Controlled Transversality

Definition 4.4. Consider a map $f : U \subset \mathbb{C}^n \to \mathbb{C}$ and a complex number $w \in \mathbb{C}$. We say f is " η -transverse" to w if for any $z \in U$ such that $|f(z) - w| \leq \eta$ we have $|\partial f(z)| \geq \eta$.

Remark 4.5. • If f is holomorphic, f is transverse to w if and only if f is η -transverse to w for some $\eta > 0$.

- If f is η -transverse then it is also η' transverse for any $\eta' < \eta$.
- If f is η -transverse and $||f g||_{C^1} \leq \delta < \eta$, then g is $(\eta \delta)$ -transverse.

We are now almost ready to state our version of the Quantitative Sard's Lemma. Let

- $\Delta = B(0, 11/10) \subset \mathbb{C}^n$
- $\Delta^+ = D(0, 22/10) \times \ldots \times D(0, 22/10) \subset \mathbb{C}^n$
- $Q_p(t) = (-\log t)^{-p}$ $p \in \mathbb{N}, t > 0$

Theorem 4.6. (Donaldson) There exists $p \in \mathbb{N}$ such that for any $\delta \in (0, 1/4)$, any $\sigma \leq \delta Q_p(\delta)$ and any $f : \Delta^+ \to \mathbb{C}$ such that $||f||_{C^0} \leq 1$ and $||\overline{\partial}f||_{C^1} \leq \sigma$, there exists $w \in \mathbb{C}$ with $||w|| \leq \delta$ such that f is $\delta Q_p(\delta)$ -transverse to w on Δ . Moreover, w can be chosen in any quadrant of \mathbb{C} (here by quadrant we mean any rotation of the standard first quadrant by some angle).

Remark 4.7. • For f holomorphic, if $||f||_{C^0} \leq 1$, there exists w with $||w|| < \delta$ such that f is $\delta Q_p(\delta)$ -transverse to w.

• For fixed t, $Q_p(t)$ decreases with p (if t < 1/e) so if p works, then p + 1 also works.

Recall that for any $p_i \in \Lambda_k$ we have Darboux charts $\phi_{p_i}^k$ which are approximate isometries Let

$$B_i = B_{d_k}(p_i, 1) \subset \phi_{p_i}^k(\Delta) \subset \phi_{p_i}^k(\Delta^+).$$

Then

$$s_{\underline{w}} = (f_i \circ (\phi_{p_i}^k)^{-1}) s_{k,p_i}$$

on $\phi_{p_i}^k(\Delta^+)$ defines $f_i^{\underline{w}}: \Delta^+ \to \mathbb{C}$.

Definition 4.8. We say s is η -transverse if all f_i 's are η -transverse to 0.

4.3 Estimates for the f_i 's

Lemma 4.9. There exists C > 0 such that for any k >> 0 and any \underline{w} , we have

- 1. $||f_i^{\underline{w}}||_{C^1(\Delta^+)} \le C.$
- 2. $||\overline{\partial} f_i^{\underline{w}}||_{C^1(\Delta^+} \le C/\sqrt{k}.$
- 3. If $||\partial f_i^{\underline{w}}|| > \epsilon$ on $f_i^{-1}(0) \cap \Delta$, then $|\nabla^{1,0} s_{\underline{w}}| > \epsilon/C$ on $s_w^{-1}(0) \cap B_i$.

If \underline{w}' coincides with \underline{w} except on I_{α}^k and such that $|w_i - w'_i| < \delta$, then we have

- 4. For any $p_i \in \Lambda_k$, $||f_i^w f_i^{w'}||_{C^1(\Delta^+)} \le C\delta$.
- 5. For any $p_i \in \Lambda_k$, if $w_i = w'_i$ then $||f_i^{\underline{w}} f_i^{\underline{w}'}||_{C^1(\Delta^+)} \le C\delta \exp(-D^2/5)$.

Proof idea. There exists R > 0, for any k >> 0, with $\phi_{p_i}^k(\Delta^+) \subset B_{d_k}(p_i, R)$, and there exists C_R such that $|s_{k,p_i}| \geq C_R > 0$ on $\phi_{p_i}^k(\Delta^+)$ (this was proven in Marco's lecture).

1. We have $s_{\underline{w}} \circ \phi = f_i \cdot (s_{k,p_i} \circ \phi_i)$, with $|f_i| = |s_{\underline{w}} \circ \phi_i| / |s_{k,p_i} \circ \phi_i| \le C$ for $\phi_i := \phi_{p_i}^k : \Delta^+ \to V$ Then

$$\nabla s_{\underline{w}} = d(f_i \circ \phi_i^{-1}) \otimes s_{k,p_i} + (f_i \circ \phi_i^{-1}) \nabla s_{k,p_i}$$

with

$$||d(f_i \circ \phi_i^{-1})|| \le |\nabla s_{\underline{w}}| / |s_{k,p_i}| + (|f_i \circ \phi_i^{-1}|) |\nabla s_{k,p_i}| / |s_{k,p_i}| \le C,$$

and hence $||df_i|| \leq C$ since ϕ_i is an approximate isometry.

2. We have

$$\overline{\partial} s_{\underline{w}} = \overline{\partial} (f_i \circ \phi_i^{-1}) \otimes s_{k,p_i} + (f_i \circ \phi_i^{-1}) \overline{\partial} s_{k,p_i} \\ |\overline{\partial} (f_i \circ \phi_i^{-1})| \le C/\sqrt{k}$$

hence $|\overline{\partial}f_i| \leq C/\sqrt{k}$.

- 3. We have $\partial s_{\underline{w}} = \partial (f_i \circ \phi_i^{-1}) \otimes s_{k,p_i} + (f_i \circ \phi_i^{-1}) \partial s_{k,p_i}$ with $f_i \circ \phi_i^{-1} = 0$ on $s_{\underline{w}}^{-1}(0)$, so $|\partial s_{\underline{w}}| = |s_{k,p_i}| |\partial (f_i \circ \phi_i^{-1})| > (C_R)(\epsilon).$
- 4. We have $s_{\underline{w}-\underline{w}'} = (f_i^{\underline{w}} f_i^{\underline{w}'})s_{k,p_i}$ hence since $|underlinew \underline{w}'| \leq \delta$, by (1) we have $||f_i^{\underline{w}} f_i^{\underline{w}'}|| \leq C\delta$.
- 5. For any $p_j \in I^k_{\alpha} \setminus \{p_i\}$ with $d_k(p_j, p_i) \ge D$, we have

$$||s_{k,p_j}|| \le C \exp(-D^2/5),$$

and therefore

$$||s_{\underline{w}-\underline{w}'}|| \le C\delta \exp(-D^2/5)$$
$$||f_i^{\underline{w}} - f_i^{\underline{w}'}|| \le C\delta \exp(-D^2/5).$$

c		٦

4.4 Induction on Colors

The present goal is to inductively construct a sequence $\underline{w_{\alpha}}$ such that for any α there exists $\eta_{\alpha} > 0$ such that $s_{\underline{w_{\alpha}}}$ is η_{α} -transverse on

$$V_{\alpha} = \bigcup_{i \in I_{\alpha}^{k}, \beta < \alpha} B_{i}.$$

Proposition 4.10. There exists $0 < \rho < 1$ and $p \in \mathbb{N}$ such that if $s_{\underline{w_{\alpha}}}$ is η_{α} -transverse on V_{α} with $\eta_{\alpha} < \rho$, and if

1.
$$1/\sqrt{k} \le \eta_{\alpha} Q_p(\eta_{\alpha})$$

2. $\exp(-D^2/5) \le Q_p(\eta_\alpha),$

then there exists $\underline{w_{\alpha+1}}$ such that $\underline{s_{w_{\alpha+1}}}$ is $\eta_{\alpha+1}$ -transverse (on $V_{\alpha+1}$) with $\eta_{\alpha+1} = \eta_{\alpha}Q_p(\eta_{\alpha})$ (recall that $Q_p(t) = (-\log t)^{-p}$).

Proof. We have $f_i^{\alpha} : \Delta^+ \to \mathbb{C}$ with

$$\begin{split} ||f_i^{\alpha}||_{C^0(\Delta^+)} &\leq C \\ ||\overline{\partial}f_i^{\alpha}||_{C^1(\Delta^+)} &\leq C/\sqrt{k} \end{split}$$

Applying Sard's theorem to $\frac{1}{C}f_i^{\alpha}$ for $i \in I_{\alpha+1}^k$, there exists p_0 such that for any δ, k with

$$\delta \in (0, 1/4) \tag{1}$$

$$1/\sqrt{k} \le \delta Q_{p_0}(\delta),\tag{2}$$

there exists $v_i \in \mathbb{C}$ with $|v_i| < \delta$, where $C^{-1} f_i^{\alpha}$ is $\delta Q_{p_0}(\delta)$ -transverse to v_i on Δ . Set $w_{\alpha+1,j} = \begin{cases} w_{\alpha+1,j} - Cv_j & \text{if } j \in I_{\alpha+1}^k \\ w_{\alpha,j} & \text{otherwise} \end{cases}$ If

$$|c\delta| < 1,\tag{3}$$

we can use the quadrant condition to ensure that $w_{\alpha,j} - Cv_j$ actually lies in the unit disk.

Now we need estimates on $s_{w_{\alpha+1}}$ on each B_i , $i \in I_\beta$, $\beta \leq \alpha + 1$. Let $i \in I_\beta$ for $\beta \leq \alpha$. Then $s_{w_{\alpha}}$ is η_{α} -transverse (on V_{α}) and for any j, $|w_{\alpha+1,j} - w_{\alpha,j}| \leq C\delta$. By the fourth part of the lemma, we have

$$||f_i^{\alpha+1} - f_i^{\alpha}||_{C^1(\Delta^+)} \le C^2 \delta$$

hence $s_{\underline{w}_{\alpha+1}}$ is $\eta_{\alpha} - C^2 \delta$ transverse. Note that this is relevent only if $C^2 \delta < \eta_{\alpha}$. Now let $i \in I_{\alpha+1}$. Introduce an auxiliary \underline{w}' defined by

$$w'_{j} = \begin{cases} w_{\alpha,j} & \text{if } j \neq i \\ w_{\alpha,i} - Cv_{i} & \text{otherwise} \end{cases}$$

Compare $s_{w_{\alpha}}$ and $s_{\underline{w}'}$:

$$s_{\underline{w_{\alpha}}-\underline{w}'} = Cv_i s_{k,p_i}$$

so $f'_i - f^{\alpha}_i = -Cv_i$, hence

$$f_i^{\alpha}$$
 is $C\delta Q_p(\delta)$ - transverse to Cv_i
 f_i' is $C\delta Q_{p_0}(\delta)$ - transverse to 0.

Now compare $s_{\underline{w}'}$ with $s_{w_{\alpha+1}}$. Observe that \underline{w}' and $w_{\alpha+1}$ coincide except on $I_{\alpha+1} \setminus \{i\}$. By the fifth part of the lemma, we get

$$||f_i^{\alpha+1} - f_i'||_{C^1(\Delta^+)} \le C\delta \exp(-D^2/5)$$

and so $f_i^{\alpha+1}$ is $C\delta Q_{p_0}(\delta) - C\delta \exp(-D^2/5)$ -transverse to 0. This is relevant only if

$$\exp(-D^2/5) \le Q_{p_0}(\delta). \tag{4}$$

Now we choose δ (and the other parameters). Let ρ be small enough that

$$\frac{\eta_{\alpha}}{2C^2} < \min(1/2, 1/C)$$

and let $\delta = \frac{\eta_{\alpha}}{2C^2}$. Then (1),(2), and (4) are satisfied.

Now we consider $p = p_0 + 1$. Since $Q_p(t) \to 0$ as $t \to 0$, for ρ small enough we have $Q_{p_0}(\delta) >> Q_p(\eta_{\alpha})$. Then

(A)
$$1/\sqrt{k} \le \eta_{\alpha}Q_p(\eta_{\alpha}) \Longrightarrow$$
 (2) (since $1/\sqrt{k} \le \delta Q_{p_0}(\delta)$)
(B) $\exp(-D^2/5) \le Q_p(\eta_{\alpha}) \Longrightarrow Q_{p_0}(\delta) >> \exp(-D^2/5)$.

Since $C\delta Q_{p_0}(\delta) - C\delta \exp(-D^2/5) \approx C\delta Q_{p_0}(\delta) > \eta_\alpha Q_p(\eta_\alpha) = \eta_{\alpha+1}, f_i^{\alpha+1}$ is $\eta_{\alpha+1}$ -transverse for and $i \in I_{\alpha+1}$. Using condition (2), for any $i \in I_\beta$ with $\beta \leq \alpha, f_i^{\alpha+1}$ is $(\eta_\alpha - C^2\delta)$ -transverse. Here $\eta_\alpha - C^2\delta = \eta_\alpha(1-1/2) = (1/2)\eta_\alpha > \eta_\alpha Q_p(\eta_\alpha)$ for ρ small enough because $Q_p(t) \to 0$ as $t \to 0$.

Now that we have proven the proposition, we need to show that we can apply it repeatedly, each time getting conditions (A) and (B).

Exercise 4.11. Let p > 0, $(\eta_{\alpha})_{\alpha \in \mathbb{N}^*}$, $\eta_{\alpha+1} = \eta_{\alpha} + p \log(\eta_{\alpha})$. Then for any q > p, there exists $\beta \in \mathbb{N}$ such that $\eta_{\alpha} < q(\alpha + \beta) \log(\alpha + \beta)$.

Assuming the exercise, let $\eta_0 = \rho$ (as given by the proposition) and set $\eta_{\alpha+1} = \eta_{\alpha}Q_p(\eta_{\alpha})$. Applying the exercise to $-\log(\eta_{\alpha})$, we get

$$Q_p(\eta_\alpha) = \eta_\alpha^{-p} \ge \frac{1}{(q(\alpha + \beta)\log(\alpha + \beta))^p} \ge \frac{C}{(\alpha\log\alpha)^p}$$
$$\ge \frac{C}{(N(D)\log N(D))^p}$$
$$\ge \frac{1}{D^{2np+1}}$$
$$\ge \exp(-D^2/5)$$

 $(N(D) = \mathcal{O}(D^{2n}))$. So (B) is satisfied at any step for D large enough. Condition (A) $(1/\sqrt{k} \leq \eta_{\alpha}Q_p(\eta_{\alpha}))$ is satisfied for k >> 0 for any α (recall that there are a finite number of colors).

5 Quantitative Sard's Theorem Modulo Yomdim's Results - Thomas Letendre

First some notation:

$$\Delta = \{ z \in \mathbb{C}^n \mid |z| \le 11/10 \}$$

$$\Delta^+ = \{ z \in \mathbb{C}^n \mid |z_j| \le 22/10 \ \forall \ j \}.$$

For $\sigma > 0$ let

$$H_{\sigma} = \{ f : \Delta^+ \to \mathbb{C} \text{ smooth } | \ ||f||_{C^0(\Delta^+)} \le 1, \ ||\overline{\partial}f||_{C^1(\Delta^+)} \le \sigma \}.$$

For $p \in \mathbb{N}$ and $\eta > 0$,

$$Q_p(\eta) = \left(\frac{1}{\log(1/\eta)}\right)^p.$$

Note that for $\eta \leq 1/4$, $Q_p(\eta) \leq \left(\frac{1}{\log(4)}\right)^p$.

Definition 5.1. A smooth function $f: U \to \mathbb{C}$ is called η -transverse to $w \in \mathbb{C}$ over U if for any $z \in U$ such that $|f(z) - w| \leq \eta$, we have $|\partial_z f| \geq \eta$.

Theorem 5.2. (Donaldson) There is some $p \in \mathbb{N}$ depending only on the dimension n such that for any $\eta \in (0, 1/4)$, $\sigma \in (0, \eta Q_p(\eta))$, and $f \in H_{\sigma}$, there exists $w \in \mathbb{C}$ with $|w| \leq \eta$ such that f is $\eta Q_p(\eta)$ -tranverse to w over Δ . Moreover, we can assume Re(w), Im(w) > 0 (in fact we can pick w is any quadrant).

Here is the outline:

- 1. Approximate holomorphic functions by polynomials
- 2. Prove the theorem for holomorphic functions
- 3. Prove the general case (modulo Hormander's methods)
- 4. Hormander's methods

1) We begin with

Lemma 5.3. Let $f : \Delta^+ \to \mathbb{C}$ be a holomorphic function such that $||f||_{C^0(\Delta^+)} \leq 1$. There exists C > 0 such that for any $0 < \epsilon \leq 1/2$, there exists a polynomial g of degree at most $C \log(\epsilon^{-1})$ such that $||f - g||_{C^1(\Delta)} \leq \epsilon$.

Proof. Let $\Gamma = \{z \in \mathbb{C}^n \mid |z_j| = 22/10 \ \forall j\}$. For any $z \in \Delta$, Cauchy's formula gives

$$f(z) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(w)}{(w_1 - z_1)...(w_n - z_n)} dw_1...dw_n$$
$$f(z) = \sum a_{i_1...i_n} z_1^{i_1}...z_n^{i_n}$$

with

$$a_{i_1\dots i_n} = \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(w)}{w_1^{i_1+1}\dots w_n^{i_n+1}} dw.$$

For $s \in \mathbb{N}$, let $g_s = \sum_{i_j \leq s} a_{i_1 \dots i_n} z_1^{i_1} \dots z_n^{i_n}$. For $z \in \Delta$, we have

$$f(z) - g_s(z) = \sum_{\exists j \text{ st } i_j > s} a_{i_1 \dots i_n} z_1^{i_1} \dots z_n^{i_n}$$

= $\frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(w)}{w_1 \dots w_n} \sum_{\exists j \text{ st } i_j > s} \left(\frac{z_1}{w_1}\right)^{i_i} \dots \left(\frac{z_n}{w_n}\right)^{i_n} dw$
= $\frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(w)}{w_1 \dots w_n} E_z(w) dw,$

where
$$E_z(w) := \sum_{\exists j \text{ st } i_j > s} \left(\frac{z_1}{w_1}\right)^{i_i} \dots \left(\frac{z_n}{w_n}\right)^{i_n}$$
. We have
 $|f(z) - g_s(z)| \le ||f||_{C^0(\Delta^+)} ||E_z||_{C^0(\Gamma)} \le ||E_z||_{C^0(\Gamma)}$
 $|E_z(w)| \le \sum_{i_1 \dots i_n \text{ st } \exists j \text{ st } i_j > s} \frac{1}{2^{i_1}} \dots \frac{1}{2^{i_n}}$
 $\le n \left(\sum_{i_1 \in \mathbb{N}} \frac{1}{2^{i_1}}\right) \dots \left(\sum_{i_n > s} \frac{1}{2^{i_n}}\right)$
 $\le n 2^{n-s-1},$

and therefore

$$||f - g_s||_{C^0(\Delta)} \le n2^{n-s-1}$$

Similarly,

$$\begin{aligned} \left| \frac{\partial}{\partial z_j} (f - g_s)(z) \right| &= \left| \frac{1}{(2\pi i)^n} \int_{\Gamma} \frac{f(w)}{w_1 \dots w_n} \frac{\partial}{\partial z_j} (E_z(w)) dw \right| \\ &\leq \left| \left| \frac{\partial}{\partial z_j} (E_z) \right| \right|_{C^0(\Gamma)} \leq (s + n + 1) 2^{n - s - 1} \\ \left| \left| \partial (f - g_s) \right| \right|_{C^0(\Delta)}^2 &= \sum_j \left| \left| \frac{\partial}{\partial z_j} (f - g_s) \right| \right|_{C^0(\Delta)}^2 \end{aligned}$$

 \mathbf{SO}

$$||\partial (f - g_s)||_{C^0(\Delta)} \le \sqrt{n}(s + n + 1)2^{n-s-1}.$$

Then for some C, λ , we have $||f - g_s||_{C^1(\Delta)} \leq Ce^{-\lambda s}$.

Now let $0 < \epsilon \le 1/2$. Observe that $Ce^{-\lambda s} \le \epsilon$ is equivalent to $s \ge \frac{\log(C) + \log(\epsilon^{-1})}{\lambda}$. Define $g := g_s$ for $s = \left\lfloor \frac{\log(C) + \log(\epsilon^{-1})}{\lambda} \right\rfloor + 1$. Then g is a polynomial with $\deg(s) \le ns$. Note that $\deg(g) \le n \left(\frac{\log(C) + \log(\epsilon^{-1})}{\lambda} + 1\right) \le C' \log(\epsilon^{-1})$.

2) Now we prove the theorem for holomorphic functions. Let $f : \Delta^+ \to \mathbb{C}$ be a holomorphic function such that $||f||_{C^0(\Delta^+)} \leq 1$ and $0 < \epsilon < 1/4$. Let

$$S^f = \{ z \in \Delta \mid |\partial_z f| \le \epsilon \}.$$

Note that f is ϵ -transverse to $w \in \mathbb{C}$ over Δ if and only if $w \in N_{f,\epsilon}$ (the ϵ -neighborhood of $f(S^f)$). Let g be the polynomial given by the lemma, so $d = \deg(g) \leq C \log(\epsilon^{-1})$ and $||f - g||_{C^1(\Delta)} \leq \epsilon$. Let

$$S^g = \{ z \in \Delta \mid |\partial_z g| \le 2\epsilon \}$$

and let $N_{g,\epsilon}$ be the ϵ -neighborhood of $g(S^g)$. Then $S^f \subset S^g$ (since $||f - g||_{C^1(\Delta)} \leq \epsilon$) and $f(S^f) \subset f(S^g) \subset N_{g,\epsilon}$ (since $||f - g||_{C^0(\Delta)} \leq \epsilon$) and thus $N_{f,\epsilon} \subset N_{g,2\epsilon}$.

Complexity of semi-algebraic sets:

Let $P : \mathbb{R}^n \to \mathbb{R}$ be a polynomial and let

$$S_p = \{x \in \mathbb{R}^n \mid ||x|| \le 1, \ P(x) \le 1\}$$

and for $\theta > 0$,

$$S_p(\theta) = \{ x \in \mathbb{R}^n \mid ||x|| \le 1, \ |P(x)| \le 1 + \theta \}.$$

Theorem 5.4. (Yomdin, Gromov, Donaldson, Mohsen)

There exists constants C, V depending only on n such that for any P, there exists arbitrarily small $\theta > 0$ such that S may decomposed into A pieces:

$$S_P = S_1 \cup \ldots \cup S_A$$

and any two points in the same S_j can be joined by a path of length at most L in $S_p(\theta)$ with $A, L \leq Cd^V$ where $d = \deg(P)$.

Proof. Set

$$S^g = \{ z \in \Delta \mid \left| \frac{\partial_z g}{2\epsilon} \right|^2 \le 1 \} = S_p.$$

Take θ as given by the theorem: $A, L \leq C \deg(P)^V = C(2(d-1))^V$ and $S^g = S_1 \cup ... \cup S_A$. For any $z_1, z_2 \in S_j$, $|g(z_1) - g(z_2)| \leq 2\epsilon L$ and z_1, z_2 can be joined by a path of length at most L in $S_p(\theta)$. Moreover, $g(S^g)$ can be covered by A disks of radius at most $2\epsilon L$.

Now $N_{g,2\epsilon}$ is contained in a union of A disks of radius at most $2\epsilon(L+1)$, hence its area is at most $A\pi(2\epsilon(L+1))^2$. Let

$$\Omega_p = \{ w \in \mathbb{C} \mid |w| \le \rho \text{ and } \operatorname{Re}(w) > 0, \ \operatorname{Im}(w) > 0 \}.$$

If $\frac{1}{4}\pi\rho^2 < A\pi(2\epsilon(L+1))^2$, i.e. $\rho > \sqrt{A}(4\epsilon(L+1))$, there is $w \in \Omega_p \setminus N_{g,2\epsilon}$ such that f is ϵ -transverse to w over Δ . Choose $\rho_0 = 4\sqrt{A}\epsilon(L+1) + \epsilon$. Then there exists

$$w \in \Omega := \{ w \in \mathbb{C} \mid \operatorname{Re}(w) > 0, \ \operatorname{Im}(w) > 0 \}$$

such that $|w| \leq \rho_0$ and f is ϵ -transverse to w over Δ .

Since $A, L \leq C(2(d-1))^v$, we have $\rho \leq \epsilon P(d)$ for P a polynomial and $d \leq C' \log(\epsilon^{-1})$. Thus

$$\rho_0 \le \epsilon \tilde{P}(\log(\epsilon^{-1})) \le C'' \epsilon \log(\epsilon^{-1})^p$$

for some $p \in \mathbb{N}$ and \tilde{P} a polynomial. Here C'' and P depend only on n.

Let $h_p(\epsilon) = C\epsilon \log(\epsilon^{-1})^p$.

Exercise 5.5. $h_p(\epsilon) \to 0$ as $\epsilon \to 0$, and $h_p : (0, \epsilon^{-p}) \to (0, h_p(\epsilon^{-p}))$ is strictly increasing (hence invertible).

Up to increasing $p, h_p(\epsilon^{-p}) \ge 1/4$. Let $0 < \eta < 1/4$, $\epsilon = h_p^{-1}(\eta)$. There exists $w \in \Omega$ with $|w| \le h_p(\epsilon) = \eta$ and ϵ -transverse to w. We have

$$\eta Q_p(\eta) = C\epsilon \left(\frac{\log(\epsilon^{-1})}{\log(\epsilon^{-1}) - \log(C) - \log(\log(\epsilon^{-1}))}\right)^p \le 2\epsilon C$$

if $\eta \leq \eta_0$.

Then for $\eta \leq \eta_0$, $\frac{\eta Q_p(\eta)}{2C} \leq \epsilon$ so f is $\frac{\eta Q_p(\eta)}{2C}$ -transverse to w. Increasing p again, we can

- lift the condition $\eta \leq \eta_0$
- erase 1/(2C).

For all $0 < \eta \leq 1/4$, there exists $w \in \Omega$ such that (for the new p) $|w| \leq \eta$, f is $\eta Q_p(\eta)$ -transferse to w over Δ .

3) <u>The General Case</u>:

Let $0 < \eta < 1/4$, $\sigma \ge 0$, $f \in H_{\sigma}$, and 3/4 < r' < 1.

Theorem 5.6. (Hormander) For any (smooth) (0,1)-form g over Δ^+ such that $\overline{\partial}g = 0$, there exists $u : \Delta^+ \to C$ (smooth) such that $\overline{\partial}u = g$ and $||u||_{L^2(r'\Delta^+)} \leq K||g||_{L^2(\Delta^+)}$, with Kdepending only on r'.

Applying this to $g = \overline{\partial} f$, we get a smooth function u with $\overline{\partial} u = \overline{\partial} f$ and $||u||_{L^2(r'\Delta^+)} \leq K||\overline{\partial} f||_{L^2(\Delta^+)}$ Let $\widehat{f} := f - u$ and note that \widehat{f} is holomorphic. Let 3/4 < r < r' and $\epsilon = (r' - r)/2$. Let $B_{\epsilon}(z)$ be the ball in \mathbb{C}^n with center z and radius ϵ . We have the following analytic lemma (we omit the proof):

Lemma 5.7. For any $z \in r\Delta^+$, $|u(z)| \leq C(||u||_{L^2(B_{\epsilon}(z))} + ||\overline{\partial}f||_{C^0(B_{\epsilon}(z))})$, with C depending only on ϵ .

Therefore we have

$$|u||_{C^0(r\Delta^+)} \le C(||u||_{L^2(r'\Delta^+)} + ||\overline{\partial}f||_{C^0(\Delta^+)})$$
$$\le C'||\overline{\partial}f||_{C^0(\Delta^+)}$$

(since $||u||_{L^2(r'\Delta^+)} \leq K||\overline{\partial}f||_{L^2(\Delta^+)}$). By a similar computation, we have

$$||du||_{C^0(r\Delta^+)} \le C(||\overline{\partial}f||_{C^0(\Delta^+)} + ||d\overline{\partial}f||_{C^0(\Delta^+)})$$

hence

$$\begin{aligned} ||\widehat{f} - f||_{C^{1}(r\Delta^{+})} &= ||u||_{C^{1}(r\Delta^{+})} \\ &\leq C(||\overline{\partial}f||_{C^{0}(\Delta^{+})} + ||d\overline{\partial}f||_{C^{0}(\Delta^{+})}) \\ &\leq C\sigma \end{aligned}$$

(recall that $f \in H_{\sigma}$). Set $\eta' = \frac{\eta}{1+C\sigma}$.

Now there exists $w \in \Omega$ such that $|w| \leq \eta'$ and $\frac{\widehat{f}}{1+C\sigma}$ is $\eta' Q_p(\eta')$ -tranverse to w over Δ . Let $w' := (1+C\sigma)w, w \in \Omega, |w'| \leq \eta$ and \widehat{f} is $(1+C\sigma)\eta' Q_p(\eta')$ -transverse to w' over Δ . Note that $(1+C\sigma)\eta' Q_p(\eta') \geq \eta Q_{p'}(\eta)$ for some p' > p.

So up to increasing p, \hat{f} is $\eta Q_p(\eta)$ -transverse to w' over Δ . Since $||f - \hat{f}||_{C^1(r\Delta^+)} \leq C\sigma$, we have that f is $(\eta Q_p(\eta) - C\sigma)$ -transverse to w' over Δ . If $\sigma \leq \frac{1}{2C}\eta Q_p(\eta)$, f is $\frac{\eta Q_p(\eta)}{2}$ -transverse to w over Δ . Increasing p again, f is $\eta Q_p(\eta)$ -transverse to w over Δ and this is true for any $\sigma \leq \eta Q_p(\eta)$.

4) <u>Hormander's L^2 methods</u>:

Let $\phi: \Delta^+ \to \mathbb{R}$ be continuous, and let

$$L^{2}(\phi) = \{ f : \Delta^{+} \to \mathbb{C} \mid \int_{\Delta^{+}} |f|^{2} e^{-\phi} < \infty \}$$
$$L^{2}_{(0,q)}(\phi) = \{ (0,q) - \text{forms on } \Delta^{+} \text{ with coefficients in } L^{2}(\phi) \}$$

We write a typical element of the latter set as $\omega = \sum \omega_I \overline{dz_I}$.

<u>Hilbert spaces</u>: Define an inner product on $L^2_{(0,q)}(\phi)$ by $\langle w, \eta \rangle_{\phi} = \sum_{|I|=q} \sum_{\Delta^+} \omega_I \overline{\eta}_I e^{-\phi}$. Fix $\phi_1, \phi_2, \phi_3 : \Delta^+ \to \mathbb{C}$ continuous functions. Then $\overline{\partial}$ defines a closed, densely defined operator $T : L^2(\phi_1) \to L^2_{(0,1)}(\phi_2)$. Let

$$D_T = \{ u \in L^2(\phi) \mid \overline{\partial} u \in L^2_{(0,1)}(\phi_2) \}.$$

For any $u \in D_T$, $Tu = \overline{\partial}u$. Then D_T is dense because $C_c^{\infty}(\Delta^+) \subset D_T$. T is closed (has a closed graph) because $\overline{\partial}$ is continuous in the distribution sense: $u_n \to u \Longrightarrow \overline{\partial}u_n \to \overline{\partial}u$. We can define $T^*: L^2_{(0,1)}(\phi_2) \to L^2(\phi_1)$. Let

$$D_{T^*} = \{ v \in L^2_{(0,1)}(\phi_2) \mid \exists C_v \text{ such that } \forall u \in D_T, \ |\langle v, Tu \rangle_{\phi_1} | \le C_V ||u||_{\phi_1} \}.$$

For $v \in D_{T^*}$, one can extend $\langle T \cdot, v \rangle_{\phi_2}$ continuously to $L^2(\phi_1)$, hence there exists $T^*v \in L^2(\phi_1)$ such that for any $v \in D_T$, $\langle Tu, v \rangle_{\phi_2} = \langle u, T^*v \rangle_{\phi_1}$.

<u>Facts</u>:

- For any $u \in D_T$, $v \in D_{T^*}$, we have $\langle Tu, v \rangle_{\phi_2} = \langle u, T^*v \rangle_{\phi_1}$.
- T^* is closed.
- D_{T^*} is dense in $L^2_{(0,1)}(\phi_2)$.

• $\operatorname{Im}(T)^{\perp} \subset \operatorname{Ker}(T^*).$

Proposition 5.8. Let F be closed subspace of $L^2_{(0,1)}(\phi_2)$ such that $Im(T) \subset F$. Then F = Im(T) if and only if for any $f \in F \cap D_{T^*}$ we have

$$||f||_{\phi_2} \le C(||T^*f||_{\phi_1}).$$

Proof. If F = Im(T), $B = \{f \in F \cap D_{T^*} \mid ||T^*f||_{\phi_1} \leq 1\}$, for any $v \in F$ take u such that Tu = v. For any $f \in B$, we have

$$|\langle v, f \rangle| = |\langle Tu, f \rangle| = |\langle u, T^*f \rangle| \le ||u||_{\phi_1}.$$

Then for any $v \in F$, $\sup_{f \in B} |\langle v, f \rangle| < \infty$. Thus $\sup_{f \in B} ||\langle \cdot, f \rangle|| < \infty$ (by Banach-Steinhaus). Since $||\langle \cdot, f \rangle|| = ||f||_{\phi_2}$, B must be bounded by some C, so for any $f \in D_{T^*} \cap F$, $||f||_{\phi_2} \leq C||T^*f||_{\phi_1}$.

Conversely, assume that for any $f \in F \cap D_{T^*}$, we have $||f||_{\phi_2} \leq C||T^*f||_{\phi_1}$. Let $g \in F$. We claim that for any $f \in D_{T^*}$, $|\langle g, f \rangle| \leq C||g||_{\phi_2}||T^*f||_{\phi_1}$ if $f \in F^{\perp} \subset (\operatorname{Im} T)^{\perp} \subset \operatorname{Ker} T^*$. If $f \in F \cap D_{T^*}$, we have

$$|\langle g, f \rangle| \le ||g||_{\phi_2} ||f||_{\phi_2} \le C ||g||_{\phi_2} ||T^*f||_{\phi_1}.$$

We have a well-defined Lipschitz map $T^*f \mapsto \langle g, f \rangle_{\phi_2}$, $\operatorname{Im}(T^*) \to \mathbb{C}$. Extend this to $\beta : L^2(\phi_1) \to \mathbb{C}$ with $||\beta|| \leq C||g||_{\phi_2}$ (this is possible by Hahn-Banach). Take $u \in L^2(\phi_1)$ such that $\beta = \langle \cdot, u \rangle$. Then $||u||_{\phi_1} = ||\beta|| \leq C||g||_{\phi_2}$ and for any $f \in D_{T^*}$, $\langle u, T^*f \rangle = \langle g, f \rangle$. For any $f \in D_{T^{**}} = D_T$ and $f \in D_{T^*}$, $\langle Tu, f \rangle = \langle g, f \rangle$. Since D_{T^*} is dense, this implies that g = Tu and $||u|| \leq C||g||$.

Now define $S: L^2_{(0,1)}(\phi_2) \to L^2_{(0,2)}(\phi_3)$ as $S = \overline{\partial}$. To prove Hormander's theorem, we need to show:

$$\exists c \text{ such that } \forall f \in D_{T^*} \cap \text{Ker}S, \ ||f||_{\phi_2} \leq C||T^*f||_{\phi_1}$$
$$\exists c \text{ such that } \forall f \in D_{T^*} \cap D_S, \ ||f||_{\phi_2} \leq C(||T^*f||\phi_1 + ||Sf||_{\phi_3}).$$

<u>Fact</u> (without proof): There exist C > 0, $\phi_1, \phi_2, \phi_3 : \Delta^+ \to \mathbb{R}$ (smooth) such that

- 1. $0 = \phi_1 = \phi_2 = \phi_3$ on $r'\Delta^+$
- 2. $\phi_3 \ge \phi_2 \ge \phi_1$
- 3. $||f||_{\phi_2}^2 \leq C^2(||T^*f||_{\phi_1}^2 + ||Sf||_{\phi_3}^2).$

Applying the proposition: for any $g \in L^2_{(0,1)}(\phi_2)$ such that $\overline{\partial}g = 0$, there exists $u \in L^2(\phi_1)$ such that $\overline{\partial}u = g$ and $||u||_{\phi_1} \leq C||g||_{\phi_2}$.

<u>Fact</u>: If g is smooth then u is also smooth.

Then $g \in W^s$ implies that $u \in W^{s+1}$, and g smooth implies that $u \in W^s$ for all s, so by Sobolev's lemma u is in fact smooth.

Finally, we want a bound for n:

$$||u||_{L^{2}(r'\Delta^{+})}^{2} = \int_{r'\Delta^{+}} |u|^{2} = \int_{r'\Delta^{+}} |u|^{2} e^{-\phi_{1}} \leq C^{2} ||g||_{\phi_{2}}^{2} \leq K ||g||_{L^{2}(\Delta^{+})}^{2}$$

6 Quantitative Transversality in Symplectic Geometry II - Jean-Paul Mohsen

We discuss applications of Donaldson's techniques to

- 1. symplectic manifolds
- 2. symplectic submanifolds and real hypersurfaces
- 3. contact manifolds (Ibort, Martinez, Presas)
- 4. symplectic isotopies (Auroux).

Let V, W be Hermitian vector spaces and $A : V \to W$ a \mathbb{C} -linear map. For A just linear over \mathbb{R} , we can write A = A' + A''. Then $||A''|| < \operatorname{Surj} A$ implies that KerA is an "approximately complex subspace".

Recall that

$$\operatorname{Surj} A = \min_{\substack{||\lambda||=1, \ \lambda \ \mathbb{R}-\text{linear functional on } W}} ||\lambda \circ A||.$$

Proposition 6.1. For any $\epsilon > 0$, there exists $\eta > 0$ such that $||A''|| < \eta SurjA$ implies that, for any $v \in KerA$ with ||v|| = 1, there exists $w \in KerA$ with $d(iv, w) < \epsilon$.

Proof. Let

$$E = \{\mu \in V^* \text{ with } \mu|_{\operatorname{Ker}A} = 0\} = \{\mu = \lambda \circ A \mid \lambda \in W^*\}.$$

For $v \in \text{Ker}A$, we have

$$A(iv) = iA'v - iA''v = -2iA''v.$$

Then

$$\begin{aligned} |\mu(iv)| &= |\lambda(A(iv))| = 2|\lambda(iA''v)| \\ &\leq 2||\lambda|| ||A''|| \leq 2\eta ||\lambda|| \text{Surj}A \\ &\leq 2\eta ||\lambda \circ A|| \\ &= \epsilon ||\mu|| \quad \text{for} \quad \epsilon = 2\eta. \end{aligned}$$

But then

$$\min_{w \in \operatorname{Ker} A} d(iv, w) = ||v_2|| = \max_{\mu \in E, \, ||\mu||=1} |\mu(iv)|$$

where $iv = (v_1, v_2) \in \text{Ker} A \oplus \text{Ker} A^{\perp}$.

We have the following corollary:

Theorem 6.2. Let s be a section of the Hermitian vector bundle $L^k \otimes E$, and let $\Sigma = s^{-1}(0)$. Then

 $||\nabla'' s|| \ll Surj \nabla s \Longrightarrow \Sigma$ is a symplectic submanifold.

Now let $H \subset V$ be a *real* hyperplane. Recall that the Levi *complex* hyperplane is given by $H \cap iH$.

Proposition 6.3. 1. If A is \mathbb{C} -linear, we have $Surj A|_H = Surj A|_{H \cap iH}$.

2. If A is \mathbb{R} -linear, then $Surj A|_H - 2||A''|| \leq Surj A|_{H \cap iH} \leq Surj A|_H$.

Proof. 1. Let $\lambda : W \to \mathbb{R}$ with $||\lambda|| = 1$ such that $||\lambda \circ A_{H \cap iH}|| = \operatorname{Surj} A_{H \cap iH}$. Write $H = \mathbb{R}x + H \cap iH$. Observe that there exists θ such that $\lambda(e^{i\theta}Ax) = 0$. Then let $\lambda_{\theta}(w) = \lambda(e^{i\theta}w)$. We have

$$\begin{aligned} \operatorname{Surj} A_{H \cap iH} &\leq \operatorname{Surj} A_H \text{ (since } H \cap iH \subset H) \\ &\leq ||\lambda_{\theta} \circ A|| \\ &= ||\lambda_{\theta} \circ A_{H \cap iH}|| \\ &= ||\lambda \circ A_{H \cap iH}|| \text{ (since } A \text{ is } \mathbb{C} - \operatorname{linear}) \\ &= \operatorname{Surj} A_{H \cap iH}. \end{aligned}$$

2. We have

Surj
$$A_{H \cap iH} \ge$$
 Surj $A'_{H \cap iH} - ||A''||$ (by the Lipschitz property of Surj)
= Surj $A'|_H - ||A''||$
 \ge Surj $A_H - 2||A''||$.

Theorem 6.4. Let s_0 be an approximately holomorphic section of $L^k \otimes E$ and V_1 a submanifold. Then there exists $s \approx s_0$ such that for any $p \in V_1$, we have

$$\eta \le \max(||s||, Surj_{q_k}(\nabla s)_{TV_1})$$

Theorem 6.5. Assume now that V_1 is a real hypersurface. With the same s_0 and s as above, we also have

$$\eta/2 \le \max(||s||, Surj_{q_k}(\nabla s)_{TV_1 \cap iTV_1}).$$

Proof. We have

$$\begin{aligned} \operatorname{Surj}_{g_k}(\nabla s)_{TV_1 \cap iTV_1} &\geq \operatorname{Surj}_{g_k}(\nabla s)_{TV_1} - 2||\nabla''s|| \\ &\geq \operatorname{Surj}(\nabla s)_{TV_1} - 2C/\sqrt{k} \text{ (since s is approximately holomorphic)} \\ &\geq \operatorname{Surj}(\nabla s)_{TV_1} - \eta/2 \quad (\text{since } k >> 1). \end{aligned}$$

Contact theory:

Let $(V, \omega = d\alpha_V)$ be an exact symplectic manifold and let $V_1 \subset V$ be a real hypersurface. We call V_1 contact if α_V restricts to a contact form on V_1 . We assert that there exists an ω -compatible almost complex structure J on V such that $\xi = \text{Ker}\alpha$ is a complex subspace.

Theorem 6.6. Let s_V be an appromitately holomorphic section of $L^k \otimes E$ and let s denote its restriction to V_1 . Let $\Sigma_1 = s^{-1}(0) \subset V_1$. Suppose that for any $p \in \Sigma_1$, $||\nabla'' s_V|| <<$ $Surj(\nabla(s))_{\xi}$ (which can be achieved by the above). Then Σ_1 is a contact submanifold (in V_1) of codimension $2rank_{\mathbb{C}}(E)$.

Isotopy properties:

Consider the following data:

- $(X, \omega_X), (Y, \omega_Y), (X \times Y, \omega_X \oplus \omega_Y)$
- L_X complex line bundle with curvature $-i\omega_X$
- L_Y complex line bundle with curvature $-i\omega_Y$
- E_X Hermitian vector bundle
- $L = L_X \otimes L_Y$ complex line bundle with curvature $-i(\omega_X \oplus \omega_Y)$
- s_X section of $L_X^k \otimes E_X$
- s_Y section of L_Y^k
- $s_X \otimes s_Y$ section of $L^k \otimes E_x$.

Theorem 6.7. With the usual symplectic data V, ω, J, g, L , let s_1, s_2 be approximately holomorphic sections of $L^k \otimes E$ which are η -transverse to 0. Then there exists an isotopy $(s_t)_{t \in [1,2]}$ such that for any t:

- s_t is approximately holomorphic
- s_t is η_1 -tranverse to 0.

Proof. Let $V_2 = V \times \mathbb{C}$ and $V_3 = V \times [1, 2]$. Then $TV_3 = TV \times \mathbb{R}$ and the Levi directions are given by $TV \otimes \{0\}$. Let $s = s_1 \otimes s_{k,1} + s_2 \otimes s_{k,2}$. The transversality theorem gives $\sigma \approx s$, where σ is η -transverse to 0. Along $p \in V_3$, we have

$$\max(||\sigma||, \operatorname{Surj}_{g_k}(\nabla\sigma)_{TV\otimes\{0\}}) \ge \eta_1,$$

so we get a family

 $s_1 \longrightarrow \sigma_1 \longrightarrow \sigma_t \longrightarrow \sigma_2 \longrightarrow s_2,$

where the extrapolation between s_1 and σ_1 can just be taken as $(1-t)s_1 + t\sigma_1$, again by the Lipschitz property of Surj.

7 Yomdim's Theory - Sylvain Courte

Let $P \in \mathcal{P}_d^* = \{P : B^m \to \mathbb{R} \text{ polynomial of deg } \leq d, | 1 \text{ is a regular value of } P \text{ and } P|_{S^{m-1}}\}$. Let $\Sigma = \{P = 1\}$. Our goal is to bound the complexity of σ in terms of d. Here by complexity we mean:

- the number of connected components (c.c.)
- the diameter of connected components in the "path-length" metric.

Theorem 7.1. (Yomdin, Donaldson, Gromov) There are constants C and ν (depending only on m) such that for any $P \in \mathcal{P}_d^*$ and $\Sigma = \{P = 1\}$, we have

- $\#c.c.(\Sigma) \leq Cd^{\nu}$
- $diam(c.c.(\Sigma)) \leq Cd^{\nu}$.

<u>Notation</u>: We will call a quantity assigned to $P \in \mathcal{P}_d^*$ *p*-bounded if it satisfies such a bound as above. Also, a set is *p*-bounded is #c.c. and diam(c.c.) are *p*-bounded.

Remark 7.2. 1. If a set if covered by a p-bounded number of (connected) sets of pbounded diameter, then it is p-bounded.

2. $\Omega = \{P \leq 1\}$ is also p-bounded.

Proof. Let $\{\Sigma_i\}$ denote the connected components of Σ , and let $\Omega_i = \{x \in \Omega \mid d_{\Omega}(x, \Sigma_i) \leq 2\}$. We claim that $\Omega = \bigcup \Omega_i$ and diam $(\Omega_i) \leq 2 + \operatorname{diam} \Sigma_i + 2$, so Ω is *p*-bounded by 1). \Box

<u>Application of the theorem</u>: Let $\epsilon > 0$ and let g be a complex polynomial of degree $\approx -\ln \epsilon$, with $g: B^{2n} \subset \mathbb{C}^n \to \mathbb{C}$. Then for $P = \frac{|\partial g|^2}{\epsilon^2}$ (a real polynomial) we consider

 $\Omega = \{P \le 1\} = \text{the set of } \epsilon - \text{critical points}$ $g(\Omega) = \text{the set of } \epsilon - \text{critical values}$ and we have

$$#c.c.(\Omega) \le C(-\ln \epsilon)^{\nu}$$

diam c.c.(\Omega) < $C(-\ln \epsilon)^{\nu}$.

By the mean value theorem, we have

$$\operatorname{area}(g(\Omega)) \le C(-\ln \epsilon)^{\nu} C(-\ln \epsilon)^{\nu} \epsilon^2 \to 0 \text{ as } \epsilon \to 0.$$

Proof of theorem. We use induction on m. m = 1: Σ consists of a most d points.

<u>m = 2</u>: Let $E \subset [-1, 1]$ be the set of exceptional values for t, where we view P as a function of z and t:

$$E = \{P = 1, z^2 + t^2 = 1\} \cup \{P = 1, \frac{\partial P}{\partial z} = 0\}.$$

By Bezout's theorem, we have $|E| \leq 2d + d(d-1)$. So we've covered Σ by a *p*-bounded number of sets. As for their diameters, we will use Crofton's formula:

Theorem 7.3. For C a curve in \mathbb{R}^m , we have

$$\int_{AGr(m-1,m)} \#(C \cap P)dP = K \cdot length(C),$$

where AGr(m-1,m) denotes the affine Grassmannian of hyperplanes.

The application of Crofton's formula is as follows. For C an algebraic curve of degree d in B^m , for almost every P we have $\#(C \cap P) \leq d$, so length $(C) \leq d$. Thus for m = 2, Crofton's formula implies that $C = \Sigma$ has p-bounded length.

$\underline{m-1 \Longrightarrow m}$:

Let $\mathbb{R}^m = \mathbb{R} \times \mathbb{R}^{m-2} \times \mathbb{R}$, with respective coordinates t, y_i, z , where we think of z as the "height function". Let $\pi : \Sigma \to [-1, 1]$ be the projection onto the t coordinate and let $\Sigma_t = \pi^{-1}(t)$. Let

$$C = \{P = 1, \ \frac{\partial P}{\partial y_i} = 0\} = \cup_t \operatorname{Crit}(z|_{\Sigma_t})$$

(note that this is a "curve").

We will need to arrange some general position conditions:

- 1. $(\pm 1, 0, 0) \notin \Sigma$
- 2. C is a smooth curve intersecting S^{m-1} transversally
- 3. for all but finitely many t, Σ_t is smooth and tranverse to S^{m-1}

Figure 1: Depiction of the accidents (for m = 3).

4. for all but finitely many $t, z|_{\Sigma_t}$ is Morse.

Let $E = \{$ "accidental parameters" $t\} \cup \{\pm 1\}$.

Lemma 7.4. For any d, there exists an open and dense subset $\mathcal{P}_d^{**} \subset \mathcal{P}_d^*$ such that (1), (2), (3), (4) are satisfied and E is p-bounded.

Restricting to $P \in \mathcal{P}_d^{**}$, $[-1,1] \setminus E = \bigcup J_\beta$ is a union of open intervals. Let $\Sigma_\beta = \pi^{-1}(J_B)$. By induction, Σ_β has a *p*-bounded number of connected components.

As for diameter, observe that there are two kinds of components of Σ_{β} . Let $\{\Sigma_{\beta}^{i}\}$ be the connected components. The either:

i) Σ_{β}^{i} does not meet S^{m-1} . Let $x_{1}, x_{2} \in \Sigma_{\beta}^{i}$ correspond to t_{1} and t_{2} . Then $d(x_{1}, x_{2}) \leq \text{diam}(\Sigma_{\beta}^{i}, t_{1}) + \text{length}(C) + \text{diam}(\Sigma_{\beta}^{i}, t_{2})$. The first and third terms are *p*-bounded by induction, while the second term is *p*-bounded by Crofton's formula.

ii) Σ^i_{β} touches S^{m-1} . Then similarly, $\Sigma \cap S^{m-1}$ is *p*-bounded by induction.

Now let $\Sigma^* = \bigcup \Sigma_{\beta} = \Sigma \setminus \pi^{-1}(E)$. Then Σ^* is covered by a *p*-bounded number of sets of *p*-bounded diameter. Σ^* is dense in Σ , so $\Sigma = \bigcup_{i,\beta} \overline{\Sigma_{\beta}^i}$, hence diam $\overline{\Sigma_{\beta}^i}$ is *p*-bounded, which implies the result.

Now to tie the remaining loose ends, how do we go from \mathcal{P}_d^{**} to $\mathcal{P}_d^{*?}$. We have that for any $P \in \mathcal{P}_d^{**}$, $\#c.c.(\Sigma) \leq Cd^{\nu}$ and diam $(c.c.(\Sigma)) \leq Cd^{\nu}$. We claim:

1. $\#c.c.(\Sigma)$ is locally constant on \mathcal{P}_d^* (this is an artifact of the conditions on *)

2. diam $c.c.(\Sigma)$ is smooth in \mathcal{P}_d^* .

Crofton's formula:

We claim that Gr(m-k,m) has a unique O(m)-invariant probability measure. We can then use the fibration $AGr(m-k,m) \to Gr(m-k,m)$ with fiber \mathbb{R}^k to get a measure on AGr(m-k,m).

Now we have

Theorem 7.5. There exists c(k,m) such that for any X^k submanifold of \mathbb{R}^m , we have

$$\int_{Agr(m-k,m)} \#(X \cap P)dP = c(k,m) \operatorname{vol}_k(X).$$

Proof. We have

$$\begin{split} \int_{Agr(m-k,m)} \#(X \cap P) dP &= \int_{P \in Gr(m-k,m)} \int_{v \in P^{\perp}} \#(X \cap (P+v)) dv dP \\ &= \int_{P} \int_{v} \#\pi_{p}^{-1}(v) dv dP \quad (\pi_{p} : X \to P^{\perp}) \\ &= \int_{P} \int_{X} |\text{Jac } d\pi_{p}(x)| dx dP \\ &= \int_{X} \int_{P} |\text{Jac } d\pi_{p}(x)| dP dx \\ &= c(k,m) \int_{X} dx \\ &= c(k,m) \operatorname{vol}(X), \end{split}$$

where we have used the change of variables formula, Fubini's theorem, and we have noted that $\int_{P} |\operatorname{Jac} d\pi_{p}(x)| dP$ is independent of x.

8 Transversality in Gromov-Witten Theory - Chris Wendl

<u>References</u>:

- Cieliebak-Mohnke '07 genus 0 case
- Ionel-Parker '13
- A. Gerstenberg, A. Krestienchine PhD theses to appear
- The MathSciNet review of Cieliebak-Mohnke by Usher.

8.1 The Problem (in Genus 0)

To a symplectic manifold (V^{2n}, ω) we want to associate Gromov-Witten invariants $GW_{0,m,A}^{(V,\omega)}$: $H^*(V, \mathbb{Q})^{\otimes m} \to \mathbb{Q}$ for $m \ge 0$ and $A \in H_2(V)$, which requires an associated almost complex structure J which is ω -tame. Morally, this invariant counts "the number of J-holomorphic spheres $u: S^2 \to V$ homologous to A with m marked points $z_1, ..., z_m \in S^2$ such that for j = 1, ..., m, there exists $u(z_j)$ a submanifold Poincare dual to α_j . Here $GW_{0,m,A}^{(V,\omega)}(\alpha_1, ..., \alpha_n)$ "equals"

$$\int_{\overline{\mathcal{M}}_{0,m}^A(V,J)} \mathrm{ev}_1^* \alpha_1 \cup \ldots \cup \mathrm{ev}_m^* \alpha_m,$$

where

$$\mathcal{M}^{A}_{0,m}(V,J) = \{ (u: S^{2} \to V, \ \underline{z} = (z_{1}, ..., z_{m}) \in (S^{2})^{m} \ \text{(distinct points)} \ | \\ \overline{\partial}u = 0, \ [u] = A \} / \text{biholomorphic reparametrization.}$$

Figure 2: In order for the last degeneration to be stable, the homology classes must satisfy $A_1, A_2 \neq 0$.

Then for j = 1, ..., m we have evaluation maps $ev_j : \mathcal{M}^A_{0,m}(V, J) \to V$. Using the Fredholme index, we can compute the virtual dimension over \mathbb{R} of $\mathcal{M}^A_{0,m}(V, J)$ to be $2(n-3) + 2c_1(A) + 2m$.

Here $\overline{\mathcal{M}_{0,m}^A(V,J)}$ is the set of stable nodal *J*-holomorphic curves, where "stable" means that for each constant component, we have

marked points + # nodes ≥ 3 .

Setting $\partial \overline{\mathcal{M}} := \overline{\mathcal{M}} \setminus \mathcal{M}$, we have

 $\partial \overline{\mathcal{M}} = \bigcup$ strata with virtual dimension \leq vir. dim $\mathcal{M} - 2$.

If (*) all moduli spaces are smooth (manifolds or orbifolds) of dim = virtual dim (really we want the linearized Cauchy-Riemann operators to be surjective) then ev : $\overline{\mathcal{M}}_{0,m}^{A}(V,J) \rightarrow V^{m}$ is a (rational) "pseudocycle") (c.f. McDuff-Salamon).

<u>The Problem</u>: (*) is almost never satisfied...

Perturbing J generically makes \mathcal{M} smooth <u>only</u> near <u>simple</u> curves (i.e. not multiply covered); it fails if there is symmetry.

8.2 Part of the Solution ("If You're Not Part of the Solution You're Part of the Problem")

If $m \geq 3$, then

$$\mathcal{M}_{0,m}^{A}(V,J) \cong \{ (u: S^{2} \to V, (0,1,\infty,z_{4},...,z_{m}) \mid \overline{\partial}_{J}u = 0, [u] = A \}.$$

<u>Idea</u>: replace $J(p \in V)$ with $J(z \in S^2, p \in V)$ (generic). Then

$$du(z) + J(z, u(z)) \circ du(z) \circ i = 0,$$

hence $\mathcal{M}^{A}_{(0,m)}(V,J)$ is a smooth manifold of dim = vir. dim. This helps with the multiple covering transversality, but there's still a drawback: when bubbling occurs, a bubble may correspond to a single point in the domain but could still be multiply covered, in which case transversality still fails.

<u>Idea</u> (Ruan / McDuff-Salamon): Assume (V, ω) is semipositive, i.e. for any $A \in \pi_2(V)$, if $\omega(A) > 0$ and $c_1(A) \ge 3-n$, then $c_1(A) \ge 0$. Now $codim\partial \overline{\mathcal{M}} \ge 2$, hence the Gromov Witten invariants are actually Z-valued. Note that this condition does not rule out multiple-covering in bubbles, but they are ruled out for index reasons.

8.3 A Fantasy of a Solution (for the Non-Semipositive Case)

We have a forgetful map

 $\pi: \overline{\mathcal{M}}^{A}_{0\,m}(V,J) \to \widehat{\mathcal{M}}_{0,m} = \{ \text{nodal Riemann sphere with m marked points} \}.$

<u>Idea</u>: Let J depend on points $p = u(z) \in V$, $\pi(u) =: \Sigma_z \in \widehat{\mathcal{M}}_{0,k}$. Problems:

- 1. When m = 0, $\widehat{\mathcal{M}}_{0,0} = \{\text{pt}\}$, so $\widehat{\mathcal{M}}_{0,0}$ doesn't "know" about bubbling.
- 2. Even for stable maps, we are forced to consider unstable domains, and unfortunately the moduli space of unstable Riemann spheres with its natural topology is not even Hausdorff...

Recap: We want J to depend on points in $\mathcal{M}_{0,m}$ (stable nodal Riemann spheres) and ensure that only stable domains appear.

8.4 Making Fantasy Reality

For $[\omega] \in H^2(V; \mathbb{Z})$, let $W_k \subset V$ be a Donaldson hypersurface of degree $k \in \mathbb{N}$. For a fixed J (ω -compatible), we can assume W_k is "almost J-holomorphic" for k >> 0, i.e. there exists $J' C^0$ -close to J such that W_k is J'-holomorphic (J' may be just ω -tame).

Then $u \in \mathcal{M}_{0,m}(V, J')$ implies that $[u] \cdot [W_k] = k\omega(u) =: l \ge k$. Unless u is contained in W_k , generically it intersects W_k at l points, hence it has l! lifts to an element of

$$\mathcal{M}_{0,m+l}(V,J',W_k) := \{ u \in \mathcal{M}_{0,m+l}(V,J') \}$$

 $\mathcal{M}_{0,m+l}(V,J',W_k) := \{ u \in \mathcal{M}_{0,m+l}(V,J') \mid$ for the last l marked points $z_l, ..., z_{l+m}, u(z_l), ..., u(z_{l+m}) \in W_k \}.$

Idea: This will force domains to have at least 3 marked points!

Lemma 8.1. Given an ω -compatible J and an almost J-holomorphic hypersurface W_k for k >> 1, J has a C⁰-small neighborhype $U_J \subset \{C^{\infty} \omega - tame \ a.c.s.\}$ such that

1. There exists $k_* > 0$ depending only on (V, ω, J) such that for any $J' \in U_J$, all J'holomorphic spheres $u: S^2 \to V$ satisfy $c_1(u) \leq k_*\omega(u)$

2. for any $k \gg 1$, $U_{J,W_k} = \{J' \in U_J \mid W_k \text{ is } J' - holomorphic\}$ is non-empty and connected.

Lemma 8.2. If k is sufficiently large and $J' \in U_{J,W_k}$ generic, then there are no J'-holomorphic spheres contained in W_k .

Proof. Assume $u: S^2 \to W_k$ is without loss of generality simple. Its index as a curve in W_k is

$$0 \le \operatorname{ind}(u) = 2(n-4) + 2\langle c_1(TW_k), [u] \rangle$$

where $c_1(TW_k) = c_1(TV|_{W_k}) - c_1(N_{W_k}) = c_1(TV|_{W_k}) - k[\omega|_{W_k}]$, hence

$$ind(u) = 2(n-4) + 2c_1(u) - k\omega(u)$$

$$\leq 2(n-4) - 2(k-k_*)\omega(u)$$

$$\leq 2(n-4) - 2(k-k_*) < 0$$

if k >> 1.

Lemma 8.3. If k is sufficiently large and $J' \in U_{J,W_k}$ generic, then every nonconstant J'-holomorphic $u: S^2 \to V$ intersects W_k in at least 3 distinct points of its domain.

Proof. Let $u : S^2 \to V$ be without loss of generality simple. Let $u^{-1}(W_k) = \{z_1, ..., z_N\}$, where the local intersection index at z_j is $l_j \in \mathbb{N}$. Then $\sum_{j=1}^N l_j = [u] \cdot [W_k] = k\omega(u)$. Now u belongs to the moduli space of curves with N marked points intersecting W_k with these conditions, and so

$$0 \le \text{vir. dim.} = 2(n-3) + 2c_1(u) + 2N - 2k\omega(u)$$
$$\le 2(n-3) + 2(k_* - k) + 2N,$$

hence if k >> 0, then also N >> 0.

-		